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n this paper, we propose a model to study the dynamics 
of malaria in an age-structured human host. Our model 
divides the human population into two compartments: 
pre-school  (0-5  years)  and  the  rest  of  the  human 
population.  The  results  of  our  mathematical  analysis 

indicate that the disease-free equilibrium is asymptotically stable 
and occurs whenever the basic reproduction number R0 is less 
than  unity.  For  R0 >  1,  the  disease-free  equilibrium  point  is 
unstable.  Using  published  demographic  epidemiological 
parameters,  our  numerical  simulations  suggest  that  a  unique, 
stable endemic equilibrium exists.

I
KEYWORDS

Reproduction number, malaria, transmission model, disease-free 
equilibrium.

INTRODUCTION

Malaria  is  a  vector-borne  disease  caused  by  protozoan 
parasites Plasmodium falciparum (P. falcifarum), the species that 

causes the most severe form of the disease in humans. According 
to the World Health Organization (WHO) Malaria Report (WH0 
2008), about 3.3 billion people were at risk of malaria. Of these, 
around 247 million clinical episodes are reported and around one 
million deaths are caused by malaria every year. The majority of 
these deaths have been children under five (5)  years.  For the 
sub-Saharan  Africa  human  population,  malaria  accounted  for 
18.0%  (precision  estimate:  15.8–20.2%)  of  children’s  death 
(Rowe et al. 2006).

The first malaria models were formulated by Ross (1911) 
and  Macdonald  (1957)  and  had  major  influences  in  later 
attempts to mathematically model the spread of malaria. Malaria 
is  transmitted  through  the  vectors,  Anopheles mosquitos,  and 
infects human of all ages. The disease is transmitted from person 
to  person  by female  mosquito  bites.  Malaria  infection  begins 
with a mosquito bite that injects P. falciparum parasites into the 
human  bloodstream.   In  a  matter  of  minutes,  the  sporozoites 
infect  the  liver.  In  a  period  of  two  weeks,  the  sporozoites 
develop into merozoites  that  are  then  released  into  the  blood 
stream where  they invade red  blood cells.  Inside  these  blood 
cells, they grow and divide, eventually causing the rupture of the 
cell and the release of more merozoites.  After ten days,  some 
merozoites develop to form the release of gametocytes that are 
transferred to a mosquito, when a mosquito feeds on the infected 
human.  Inside  the  mosquito,  gametocytes  mature  into 
sporozoites and the malaria parasite cycle begins again (NIAID 
2007).

There  have  been  efforts  over  the  last  three  decades  to 
identify  a  vaccine  against  P.  falciparum malaria.   Although 
various control  methods are  beginning to  result  in  downward 
trends in incidences in some countries (Breman et al. 2004), the 
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gross  number  of  malaria  cases  is  still  on the increase  due  to 
several  factors  including  poor  and  ineffective  diagnosis 
(Kiszewski  and  Teklehaimanot  2004).  Scientists  are  assessing 
different vaccine formulations that stimulate the human immune 
system to control the parasite densities at particular stages of its 
life  cycle  (Beier  et  al.  1994,  Alonso  et  al.  2004).  Several 
candidate  malaria  vaccines  are  now  in  Phase  I  or  Phase  II 
clinical trials or have entered pre-clinical testing. 

Model Formulation

We  analyze  a  model  similar  to  that  of  Tumwiine  et  al. 
(2007),  where  the  human  population  is  divided  into  three 
compartments: susceptible humans SH, infectious humans IH, and 
recovered humans (with temporary immunity) RH. The mosquito 
or  vector  population  is  divided  into  two  compartments:  the 
susceptible  class  SV and  the  infectious  class  IV.   Our  model, 
illustrated in Figure 1, seeks to look into the dynamics of the 
Susceptible-Infectious-Recovered-Susceptible  and  Susceptible-
Infectious (SIRS-SI)  malaria transmission, taking into account 
the two human classes, pre-school children (H1 – aged five and 
below) and the rest of the humans (H2 – older than five years). 

The main difference of our model from that of Tumwiine et 
al. (2007) is that we have divided the human population into two 
classes:  H1 and H2 having  S,  I and  R compartments  in  each 
class.  Thus,  the  human  population  NH is  divided  into  six 
compartments denoted by the following variables:

SH1 is the number of susceptible humans of age five 
(5) years and below;

IH1 is the number of infectious humans of age five (5) 
years and below;

RH1 is  the  number  of  recovered  humans  (with 
temporary immunity)  of  age  five  (5)  years  and 
below;

SH2 is  the number of  susceptible humans older  than 
five (5) years;

IH2 is the number of infectious humans older than five 
(5) years; and

RH2 is  the  number  of  recovered  humans  (with 
temporary immunity) older than five (5) years.

 

In general, any member of the human population (pre-school 
or older) remains in the susceptible class  S for a certain period 
unless bitten and becomes infectious. Once in the infective class 
I, an individual may recover without acquiring immunity and be 
transferred back into the susceptible class  S, or stays in class  I 
while infectious before moving to the recovered class R with an 
acquired  temporary immunity.  Humans  in  the  recovered  class 
may  lose  immunity  and  move  back  to  the  susceptible  class. 
Humans  leave  the  population  through  natural  death  rate  and 

through per-capita death rate due to infection. 

In particular, members of the susceptible pre-school humans 
SH1 leave the population and move to infectious IH1 or grow older 
to susceptible SH2. Infectious IH1 leave the population and transfer 
to the infectious IH2, recovered RH1 or back to the susceptible SH1. 
For  the  recovered  RH1 population,  members  may grow to  the 
recovered RH2 or move to the susceptible SH1. 

Similarly, for the rest of the human population, susceptible 
SH2 members may move to the infectious class IH2. Infectious  IH2 

members  can  transfer  to  the  recovered  RH2 or  move  back  to 
susceptible SH2.  Recovered RH2 members can lose immunity and 
move back to the susceptible SH2 group.

As  for  the  vector  population  NV,  it  is  divided  into  two 
compartments:

SV is  the  number  of  mosquitoes  in  the  susceptible 
class; and

IV is  the  number  of  mosquitoes  in  the  infectious 
class.

Susceptible  mosquitoes  SV may transfer  into  the  infective 
class  IV.  Due  to  short  life  cycle  of  mosquitoes,  the  infective 
period ends with their death. 

The movements of humans and mosquitoes from one class 
to another are illustrated in Figure 1 while the parameters used in 
the  model  are  shown  in  Table  1.  The  human-mosquito 
interaction follows this system of differential equations:

Note that NH = SH1 + IH1 + RH1 + SH2 + IH2 + RH2 and Nv = SV 
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(2.1)

(2.2)

(2.3)

(2.4)

(2.6)

(2.7)

(2.5)

(2.8)



+ Iv . We differentiate these equations and add the corresponding 
equations in (2.1) – (2.8) to obtain the differential equations:

The model assumes that all newborns are susceptible in both 
human and mosquito populations. The per capita birth rate for 
humans and mosquito populations,  λH  and  λV respectively, are 
both positive. The human and mosquito populations experience 
per capita natural death rates µ1, µ2 and µV, respectively. Infected 
humans die due to infection at per capita death rates δ1   and δ2, 
respectively. Recovered human individuals lose their immunity 
at per capita rates of γ1  and γ2. To ensure that we have a stable 
positive  human  population,  we  assume  that  λH>δ1+δ2+µ1+µ2. 
Moreover, it is clear that the birth rate λH should be greater than 
the per capita rate ∈ of growing up.

Consider the interaction between the two populations shown 
in Figure 1. If a1 is the average number of bites per mosquito per 
unit time, then there are a1NV/NH  bites per human per time. For 
the pre-school humans H1, note that there are  SH1  susceptible 
humans and the proportion of the total number of bites that are 
potentially infectious to humans is  IV/NV . Then the number of 

potentially  infectious  bites  given  to  susceptible  pre-school 
humans is a1IVSH1/NH  bites per time. However, only a fraction of 
these  bites,  namely  b ,  successfully  infect  the  pre-school 
humans.  Hence we have:

pre−school humans infected
unit time

=
a1bI V S H1

N H

The  same  formulation  is  constructed  for  the  rest  of  the 
human group H2:

rest of humans infected
unit time

=
a2 bI v S H2

N H

Similarly for the mosquito population, we have

mosquitoes infected
unit time

=
a1 cI H1 Sv

N H
+

a2 c I H2 Sv

N H

To  analyze  the  age-structured  malaria  model  given  by 
Equations (2.1)–(2.8), we construct the fractional quantities by 
scaling  the  population  of  each  class  by  the  total  species 
population.  The  proportions  for  the  system  are  Sh1=SH1/NH, 
Ih1=IH1/NH,  Rh1=RH1/NH,  Sh2=SH2/NH,  Ih2=IH2/NH,  Rh2=RH2/NH, 
Sv=SV/NH and  Iv=IV/NV. Note that we have used small letters as 
subscripts to denote the scaled quantities.

This  creates  a  new  system  of  eight  equations  for  the 
fractional population variables  Sh1, Ih1, Rh1, Sh2, Ih2, Rh2, Sv and Iv 

that are obtained by differentiating each proportion with respect 
to  time.  However,  since  we  have  the  relations   Sh2=1-
(Ih1+Rh1+Sh2+Ih2+Rh2)  and  Sv=1-Iv,  we  obtain  the  following 
reduced system of six differential equations:
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Figure 1. SIRS-SI withage-structured human population.

(2.9a)

(2.9b)

(2.9c)



This  system  of  equations  is  epidemiologically  and 
mathematically  well-posed  on  the  domain 

 
 and , where  denotes 

the positive orthant in .

Model Analysis

In  this  section,  the  age-structured  malaria  model  is 

qualitatively analyzed to investigate the existence and stability 
of the disease-free equilibrium point.  We use the reproductive 
ratio R0 to determine the stability of the disease-free equilibrium 
point.  Due  to  the  complexity  arising  from  the  six  nonlinear 
equations, we resort to numerical  simulations to assert that an 
endemic equilibrium point exists.

Definition 1. If f is a map of a set Y into itself, a subset X of 
Y is forward invariant under f if 

Theorem 2.   Assuming that the initial conditions lie in  D, 
the system (2.9) has a unique solution that exists and remains in 
D for all time t > 0.

Proof: Note  that  the  right-hand  side  of  the  system  of 
equations (2.9) is continuous with continuous partial derivatives 
in D, so (2.9) has a unique solution.  To show that D is forward 
invariant,  we  note  that  if  Ih1=0  then  I'h1 > 0;  if  Rh1=0 then 
R'h1>0; if  Sh2=0 then  S'h2>0; if  Ih2=0 then  I'h2>0; if  Rh2=0 then 
R'h2>0; and if Iv=0 then I'v>0. Note also that if Ih1 + Rh1 + Sh2 + Ih2  

+ Rh2=1 then I'h1  + R'h1  + S'h2  + I'h2  + R'h2<0. If  Iv=0, then I'v>0, 
and when Iv=1 then I'v<0 Hence, none of the orbits can leave D 
and a unique solution exists for all time. 

Definition 3.  A disease-free equilibrium (DFE) is a steady 
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Figure 2. R0=5.051. Solution of the malaria 
model (2.9) with baseline parameters for 
areas of high transmission. For the initial 
condition, one thousand randomly generated 
initial values for xi  = (Ih1, Rh1, Sh2, Ih2, Rh2, Iv) 
are taken. For clarity of graph, only twenty 
from the 1000 are plotted. The system 
approaches the endemic equilibrium point 
x*=(0.337, 0.164,  0.021, 0.180, 0.229, 
0.605).

(2.9e)

(2.9f)

(2.9d)



state solution of an epidemic model with all infected variables 
Ih1, Ih2, and Iv equal to zero.

Lemma 4. For all DFE points on  

Proof: Suppose  no  infected  mosquitoes  are  present,  i.e., 
Iv=0. By setting the right hand side of Equation (2.9f) to zero, we 
see that Iv=0 is true if and only if Ih1 = Ih2 = 0 is true. If  Ih1 = Ih2 = 
0, and we set the right hand side of Equation (2.9b) to zero, then 
Rh1 = 0. Similarly, using Equation (2.9e) we get Rh2 = 0.

Theorem 5.  The malaria model (2.9) has exactly one DFE 
point  in   which  we  label  as 

 where   if 

, and 

Proof:  We need to show that x0 is an equilibrium point of 
(2.9) and no other equilibrium points exist on . We 
can see from Lemma 4 that on , I*h1 = I*h2 = R*h1 = 
R*h2 =  I*v =  0.  If  S'h2  =  0,  we  then  get  the  equation 

. If 
,  then   is  unique  in  D.  If 

, we show that the only possible value is 

We first show that

is not in D. Assume that . Since  
and ,

,
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(3.1)

Figure 3.  R0=5.051. Endemic patterns of the susceptible, 
infected, recovered H1 and H2 populations (3a and 3b) and 
the susceptible and infected mosquito population (3c). Starting 
at point xi=(Ih1, Rh1, Sh2, Ih2, Rh2, Iv)  = (0.100, 0020, 0.340, 
0.160, 0.050, 0.150) having Ih1, Ih2 and Iv values and particular 
baseline parameters for areas of high transmission, the 
system (2.9) approaches the endemic point x* = (0.337, 0.164, 
0.021, 0.180, 0.229, 0.605) with the computed eigenvalues (-
0.1844, -0.0530, -0.0418, -0.0042, -0.0065, -0.0002).



,

which implies that   and hence, it is not in D.  On 
the other hand, if , then by a similar reasoning, we can 
show that  and hence not in D.

Next,  we show that  .  We again assume that 
, and start with the inequality  We 

then  add  the  expression 
 

to  both  sides  of  the  inequality  to  get 
. 

Next, we take the square root of both sides and add  
to get 

 

Hence   Starting  with  the  inequality 

, 
we can similarly arrive at .  Hence .

As for the case when , we can argue similarly to 
show that  so we may omit the details. 

This completes the proof that  is unique in D.

Reproductive number

Definition  6.  The  reproductive  ratio  R0 is  the  expected 
number of individuals infected by a single infected individual 
over the duration of the infectious period in a population, which 
is entirely susceptible.
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Figure 4.  R0=1.290. Solution of the malaria model (2.9) 
with baseline parameters for areas of low transmission. 
For the initial condition, one thousand randomly 
generated initial values for xi  = (Ih1, Rh1, Sh2, Ih2, Rh2, Iv) 
are taken. For clarity of graph, only twenty from the 
1000 are plotted. The system approaches the endemic 
equilibrium point x* = (0.076, 0.037, 0.280, 0.095, 0.120, 
0.078).



We use the next generation operator  approach defined by 
Diekmann et al. (1990) and Van den Driessche and Watmough 
(2002)  to  compute  R0 .  In  the  next  generation  method,  R0  is 
defined as the spectral radius of the next generation operator K. 
The formation of  the operator  K  involves  in formulating the 
infected  and  non-infected  compartments  from  the  model 
equation (2.9).  To find the next generation operator in matrix 
notation, let us assume that there are  n compartments of which 
m are infected.  Define  the  vector  , 
where  xi denotes  the proportions  in  the  ith  compartment,  and 
where   is the disease-free equilibrium 
point.  Let  Fi(x) be  the  rate  of  appearance  of  new infections, 
while   are  the  transfer  of 
individuals  out  of  the  compartment  i.  We  form  the  next 
generation operator   where   
and  .  Since  we  are  concerned  with  the 

population that spread the infection, then we only need to model 
Ih1,  Ih2 and  Iv classes. In equation (2.9), we form the equations 
from  I'h1,  I'h2 and  I'v which  are  the  expressions  that  refer  to 
infections. In our model, the subscripts  i and  j are elements of 
the set  {1,2,3}.  Note that  Fi includes only infections that  are 
newly  arising,  and  does  not  include  terms  that  describe  the 
transfer of infectious individuals from one infected compartment 
to another. Hence we have 

and 
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Figure 5.  R0  = 1.290. Endemic patterns of the 
susceptible, infected, recovered H1 and H2 populations 
(5a and 5b) and the susceptible and infected mosquito 
population (5c). Starting at point xi = (Ih1, Rh1, Sh2, Ih2, Rh2, 
Iv)  having high Ih1, Ih2  and Iv  values and particular 
baseline parameters for areas of low transmission, the 
system (2.9) approaches the endemic point x* = (0.076, 
0.037, 0.280, 0.095, 0.120, 0.078). with the computed 
eigenvalues (-0.1478, -0.0088, -0.0025-0.0022i, 
-0.0025+0.0022i, - 0.0034, -0.0002).



.
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Table 1. The parameters for the malaria model and their dimensions.



The matrices F and V are given by:

and 

,

where for convenience we introduce the variables
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Table 2. Baseline values and ranges for the parameters for the malaria model (2.9). The parameter descriptions 
are given in Table 1 and explanation of the values are found in Appendix A.



Hence  we  have  the  next  generation  matrix

Taking the dominant eigenvalue of matrix K, we get 

or

Stability of the disease-free equilibrium point

The stability of the equilibrium point can be performed by 
calculating the roots of the eigen-equation

where J* is the Jacobian evaluated at the equilibrium point, and 
I is  the  identity  matrix.  The  characteristic  polynomial  is  of 
degree  6  since  there  are  six  differential  equations.  If  all  the 
eigenvalues have negative real part, then the equilibrium point is 
stable.

We study the stability of the disease free equilibrium point 
.  The  Jacobian  of  the  malaria  model 

(2.9) is given by:

where
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(3.2)

(3.3)

(3.5)

(3.4)

(3.6)



Theorem 7. The disease free equilibrium point x0 is locally 
asymptotically stable if the R0<1 and unstable if R0>1.

Proof: Let  the  eigenvalues  be  .  Evaluating 
the Jacobian matrix xo gives us:

As the third column contains only the diagonal term, then 
this diagonal term forms one eigenvalue of the Jacobian:

Similarly, the other eigenvalues are: 

Note that the eigenvalues η1, η2 and η3  are all negative. 

The remaining eigenvalues can be obtained by solving the 
equation , where A1, A2, and A3  

are the coefficients given by the expressions:

Using Routh-Hurwitz criteria (Edelstein-Keshet 1988),  the 
equilibrium  is  locally  stable  if  the  following  conditions  are 
satisfied: 

(i)

(ii)

(iii)

To show (i), (ii), and (iii) we use  (3.2) and (3.3). We have

Clearly, A1 > 0. As for A3, we have

Recall that 0 < Sh1 < 1, so for ease of notation we introduce 
the positive expressions, 

and 

Hence we get 

If  in (3.5), then 

which implies that

.

 Hence we have .

 Finally,  we show that  .  The expression 
for A2 is 

Vol.5 | No.2 | 2012               Philippine Science Letters                                                                          179

(3.8)

(3.9)

(3.10)



Hence we get 

 If , then

Since all the Ti are positive, we can see from (3.13) that 

and 

Combining (3.12), (3.14) and (3.15), we get 

and thus, 

So  if   we  have  shown  that  all  the  remaining 
eigenvalues of the Jacobian have negative real part. Hence, the 
disease  free  equilibrium  point   is 
locally asymptotically stable if  .  If  ,  we can 
see that  . Hence, there is only one sign change in the 
sequence,  and so by Descartes rule of sign, there is 
one  eigenvalue  with  positive  real  part.  This  implies  that  the 
disease-free  equilibrium point  x0 is unstable.  If  ,  we 
have  , hence the Jacobian of  (2.9) has one eigenvalue 

equal to zero at  .  This  result  makes sense intuitively, 
since if  , on the average, each infected human infects 
less than other human, so we expect the disease to die out.

Endemic disease equilibrium point

The endemic equilibrium solution of (2.9) can be found by 
setting  the  right  hand  side  to  zero  and  solving  the  nonlinear 
system  to  obtain  .  The 
equilibrium point at the endemic level has a strong influence in 
the behavior of the disease transmission for a given community. 
The endemic equilibrium point is the final reachable situation, 
even  though  there  could  be  infinitely  many  different  initial 
distributions of malaria in a community. Stability analysis is an 
important  mathematical  tool  that  provides  the  conditions  that 
guarantee  the  stability  of  an  endemic  equilibrium  point. 
However,  the complexity of the system of equations (2.9) has 
prevented  us  from  finding  explicit  expressions  for  the 
representation of the endemic equilibrium point(s). Although we 
cannot  analytically  prove  the  existence  of  an  endemic 
equilibrium point, our exhaustive numerical simulations suggest 
that a unique and stable equilibrium point exists.

In our numerical simulations, we made use of two sets of 
baseline parameter  values:  one for  areas  of  high transmission 
and  one  for  low transmission.  According  to  the  WHO world 
malaria report (2008), areas of high transmission are countries 
where the reported incidence of malaria due to all species is 1 or 
more  per  1000  population  per  year,  and  for  areas  of  low 
transmission are countries with less than 1 per 1000 population 
per year but greater than 0. Since published data (WHO 2010) 
about human population with reported cases such as death and 
admission  due  to  malaria  are  accessible,  then  we  use  these 
parameters in our simulation. Due to lack of consistent historical 
data  for  most  of  the  regions,  we  select  only  countries  with 
reported  number  of  malaria  cases  for  the  year  2009.  The 
demographic data for countries with areas of low transmission 
level  are from Madagascar,  Rwanda, and Swaziland. Ethiopia, 
Sao Tome and Principe, Senegal, and Zambia are the countries 
chosen  for  areas  of  high  malaria  transmission.  For  the  other 
parameter  estimates,  we use  parameter  values  from published 
studies and country-wide data.

For  each  set  of  parameters,  we  numerically  explore  the 
behavior  of  the  system  and  demonstrate  the  existence  of  an 
endemic  equilibrium  point  for  (2.9).  After  an  endemic 
equilibrium point is generated, we then evaluate the eigenvalue 
equation to check if there is a stable endemic equilibrium point.

Numerical Simulation Results

We  present  numerical  simulations  to  illustrate  the 
transmission of malaria disease for the two situations described 
above. The ode45 and fsolve functions in Matlab were used 
in  this  study.  The  parameter  values  considered  in  the  two 
situations are given in Table 2. For both set of parameters, we 
used 1000 randomly generated initial points in D and solve (2.9). 
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For clarity, only twenty out of the 1000 curves are shown in the 
graphs.

For the baseline parameters for areas of high transmission, 
we obtained numerically R0=5.051. Figures 2a, 2b and 2c show 
the behavior for H1, H2 and mosquito populations respectively. 
The graphs were obtained by varying the starting points while 
the other parameters were fixed. Figure 2a shows the different 
initial  and  long  term  behavior  of  the  H1  populations  in  the 
following  classes:  Susceptible  pre-school  Sh1,  Infectious  pre-
school  Ih1,  and Recovered pre-school  Rh1.  Similarly,  Figure 2b 
shows the  different  initial  and  long term behavior  of  the  H2 
populations in the  Sh2,  Ih2 and  Rh2 classes. Figure 2c shows the 
different initial and long term behavior of the  Sv and  Iv classes. 
As time progresses and increases further, the population in the 
different classes from different initial starting points seem not to 
change  and  approach  a  single  value.  For  the  different  initial 
conditions,  the  figures  illustrate  to  have  reached  an  endemic 
equilibrium point x*. 

To explore and demonstrate stability of the steady state, the 
initial  conditions  were  chosen  by  giving  small  values  for 
infectious  Ih1  and  Ih2 on the computed endemic point. In Figure 
3a,  during  the  first  few  months,  the  susceptible  pre-school 
humans  decrease  while  infectious  and  recovered  pre-school 
humans  increase  and  the  infectious  mosquitoes  also  increase. 
Those pre-school humans who are infectious enter the infectious 
H2 class or may recover with partial immunity and stays in the 
pre-school,  which  explains  the  increase  in  the  infectious  H2 
class  as  seen in  Figure 3b.  As infectious humans H1 and H2 
increase, susceptible mosquitoes decrease due to the increase of 
infection.  After  the  first  few  years,  the  human  and  mosquito 
populations seem to attain a situation where there is no sudden 
change.  As  time  increases  further  the  populations  in  the 
respective classes seem not to change. This is a situation when 
an epidemic occurs in a community and would have reached an 
endemic equilibrium point.

For areas of low malaria transmission as shown in Figures 
4a-4c and 5a-5c, a similar approach is done. In this case, some of 
the baseline parameters of the malaria model have lower values. 
These set of parameters give rise to  R0 =  1.290  and as this is 
greater than one the interaction is persistent. The graphs were 
obtained by using the baseline low parameters given in Table 2. 
Figures 4a, 4b and 4c show the different initial and long term 
behavior of the  Sh1,  Ih1,  Rh1,  Sh2,  Ih2,  Rh2,  Sv and  Iv classes. The 
numerical simulation shows the disease establishes itself in the 
community when  R0 >  1.  Like  in  the  case  for  areas  of  high 
transmission,  the  population  in  the  different  classes  from 
different initial starting points reached a single value. 

SUMMARY AND CONCLUDING REMARKS

We proposed a model for the dynamics of malaria with age-
structured  human hosts.  We analyzed  a  system of  differential 
equations model with six variables for humans and two variables 
for mosquitoes. We showed that there exists a domain where the 

model is epidemiologically and mathematically well posed. The 
model was then reformulated in terms of the proportions of the 
age-structured classes of the respective populations. The disease-
free  equilibrium  point  was  obtained  and  its  stability  was 
analyzed.  We identified  the basic  reproduction number  R0  in 
terms of the model parameters that measure the intensity of the 
transmission of the disease. It  was shown that  R0 provides the 
expected number of new infections (in mosquitoes and humans) 
from one infectious  individual  (human or  mosquito)  over  the 
duration of the infectious period. It was also established that for 
the  basic  reproduction  number  R0 <  1  ,  the  disease  free 
equilibrium point emerges. Although we cannot prove in general 
that  the  endemic  equilibrium  point  is  unique  for  R0 >  1, 
numerical results for the selected parameter sets seem to suggest 
that there is a unique endemic equilibrium point.

FOR FURTHER EXPLORATIONS

Since we have shown an explicit expression for R0, we can 
analytically  evaluate  its  sensitivity  to  the  different  parameter 
values. We can also numerically evaluate the sensitivity of the 
endemic equilibrium to the parameter values, as this will allow 
us  to  determine  the  relative  importance  to  the  age-structured 
malaria transmission and prevalence.
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Appendix A. Data for Baseline parameter value

This appendix shows the tables of data and explanations for 

the  baseline  parameter  values  of  the  model  (2.9)  including 

references.

Population  data  for  humans. For  areas  with  low 

transmission  levels,  Table  A.1  shows the  life  expectancy and 

birth rate estimates for the year 2011 for the countries with areas 

of  low  transmission.  Using  the  demographic  data  from  the 

country of Rwanda, we assume the birth rate of 37 births per 

year  per  1000  people,  so 

For areas with high transmission levels, Table A.2 shows the 

life expectancy and birth rate estimates for the year 2011 for the 

countries  with  areas  of  high  transmission.  Using  the 

demographic data from the country of Sao Tome Principe and 

assume a birth rate of 38 births per year per 1000 people,  so 

.

Population data for mosquitoes. For the per capita natural 

birth rate of mosquitoes denoted by λv, we use the results for An.  

gambiae mosquito birth rate calculated by Olayemi and Ande 

(2009). The result from the study of 120 partially engorged adult 

female mosquitoes lived for an average of about 23 (23.1±8.29) 

days.  A  minimum  of  10  days  is  required  for  An.  gambiae 

mosquitoes to take their first blood meal and get infective, then 

the female mosquito will survive for an additional 13 days under 

controlled conditions. The computed overall survival rate from 

eclosion  to  adult  emergence  was  84.14%.  For  the  per  capita 

natural death rate of mosquitoes, we use the value µv=0.052/day. 

The value used is similar to the value reported by Macdonald 

(1957). For both low and high areas of malaria transmission, we 

use the same value for  µv . For the range of values on both  λv 

and  µv,  we considered  the  same range  used  by Chitnis  et  al. 

(2008).

Data  for  the  number  of  bites  on  humans  per  female 

mosquito per unit time. Table A.3 show results for the different 

estimates for the average number of bites on humans per female 

mosquito per day. As observed in the study of Taye et al. (2006), 

the  biting  cycle  of  mosquitoes  in  the  indoor  and  outdoor 

environment  appeared  to  be  similar,  but  most  biting  of  An. 

arabiensis occurred after 22:00 h when people are presumed to 

be in bed. For An. arabiensis and An. gambiae, the night biting 

cycle  are  similar  with peak  occurring between 2:00 and  6:00 

(Fontenille  et  al.  1997).  For  our  simulation,  since  malaria 

prevalence  is  shown to  be  higher  on  the  children  population 

(Gemperli et al. 2007, Bekessy et al. 1976), we assume a 15% 

increase on the number of bites on H1 compared to H2. For high 

transmission  areas,  we  use  the  estimates  of  0.40  bites  per 

mosquito  per  day  for  a2 and  0.46  for  a1.  For  areas  of  low 

transmission,  we  use  the  estimated  value  of  0.25  bites  per 

mosquito per day for a2 and 0.29 for a1. 

Data for b and c. Table A.4 shows the estimates from field 

studies,  the  probability  of  transmission  from  an  infectious 

mosquito to a susceptible human. We use the estimate of  b = 

0.086 for both low and high transmission countries. Table A.5 

shows the probability of transmission from an infectious human 

to susceptible mosquitoes. We use the estimates of  c = 0.48 for 

areas with high level of transmission and c = 0.24 for areas with 

low levels of transmission.

Data for  r1 and  r2. Table A.6 shows estimates from field 

studies, the duration of the infectious period in humans. It has 

been  shown that  temporary immunity is  slowly acquired  and 

reduces  illness  when  a  person  had  repeated  reinfection  or 

continued exposure (Smith et al.  2005).   Immunity to infection 

in early childhood do not persist, hence H1 will require a longer 

period  to  acquire  some  kind  of  immunity.  To  illustrate  the 

behavior,  we  use  24  months  for  H1  to  acquire  temporary 

immunity and 9.5 months for the H2 class to clear infection and 

acquire some kind of immunity. We use selected values for both 

low and high transmission areas.
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Data for υ1 and υ2. Using the estimates in Table A.6, for the 

progression from the infectious state  Ih1 to susceptible state  Sh1, 

we assume that it takes around 4 months, and for the progression 

from the infectious state Ih2 to susceptible state Sh2 to be around 2 

years.  We  use  the  selected  values  for  both  low  and  high 

transmission areas.

Data  for  γ1 and  γ2. It  has  been  shown that  immunity in 

humans is short-lived and requires repeated reinfection to sustain 

itself. The rate at which the humans lose immunity is a nonlinear 

process that depends on the transmission rate (Smith et al. 2005). 

For ease of analysis, we assume that the immunity is lost at a 

constant rate. For our baseline value, we assume that the period 

of  immunity  for  both  H1  and  H2  lasts  for  a  year.  This 

assumption  will  be  used  for  both  areas  of  low  and  high 

transmissions. We assume that the values vary from 3 months to 

2 years.

Data for δ1 and δ2.  Table A.7 show estimates of the human 

population  for  areas  of  low  and  high  level  of  malaria 

transmission. The computation for the per capita death rates of 

humans  due  to  infection,  we  use  the  reported  death  due  to 

malaria from the World Malaria Report (WHO 2010). This will 

be  done  for  the  H1  and  H2  population.  For  areas  of  low 

transmission,  we  use  the  estimate  value  of 

280/1694/1000/365.25 = 4.5x10-7 for H1 and the estimate value 

529/8304/1000/365.25 = 1.7x10-7 of  for H2. Similarly, for areas 

of high transmission, we use the estimated values of  2.1x10-6 

and 9.8x10-8 for H1 and H2 respectively.

Data for µ1 and µ2.  Table A.7 show estimates of the human 

population  for  areas  of  low  and  high  level  of  malaria 

transmission. We use the values of death due to other causes in 

the computation for the per capita death rates of humans. This 

will be done for H1 and H2 populations.

Data for ∈. We use the range of values from the computed 

birth rate, the natural death rate (the other causes of death), and 

the death rate due to infection to estimate the value for  ∈. We 

use an estimate of  ∈ by subtracting both the death rate due to 

infection δ1 and the natural death rate  µ1 from the birth rate  λh. 

The same formula will be used for both areas with low and high 

transmission. PSL
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Table A.1. Demographic data for countries with areas of low level of malaria transmission.

Table A.2. Demographic data for countries with areas of high level of malaria transmission.

Table A.3. Daily mosquito biting rate

Table A.4. Probability of transmission of malaria from infectious mosquito to a susceptible human.
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Table A.5. Data for probability of transmission of infection from humans to mosquitoes.

Table A.6. Data for the duration of the infectious period for humans.

Table A.7. 2009 data for countries with areas of low and high level malaria transmission.
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