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Abstract

This paper focuses on minimizing a shape functional through the
solution of a Pure Dirichlet boundary value problem, and a Dirichlet-
Robin boundary value problem. This shape optimization problem is
a variant of the Kohn-Vogelius shape optimization formulation of a
Bernoulli free boundary problem. The first- and second-order shape
derivatives of the cost functional under consideration are explicitly de-
rived. Interestingly, the present findings coincide with the existing re-
sults regarding solutions to the Bernoulli problem.
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1 Introduction

The present paper derives the shape gradient and shape Hessian of the functional J
in the minimization problem

min
Ω
J(Ω) ≡ min

Ω

∫
Ω
|∇(uD − uN )|2 dx (1)
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where the state functions uD and uN satisfy the following Dirichlet and Robin bound-
ary value problems, respectively:

−∆uD = 0 in Ω,

uD = 1 on Γ,

uD = 0 on Σ.

(2)


−∆uN = 0 in Ω,

uN = 1 on Γ,

αuN +
∂uN
∂n

= λ on Σ.

(3)

where α ≥ 0 is fixed, and λ < 0.

The shape optimization formulation (1) subject to (2) and (3) is derived from
the two-dimensional exterior Bernoulli free boundary problem, a problem wherein
we are given a constant λ < 0 and a bounded and connected domain, say A ⊂ R2

with a fixed boundary Γ := ∂A, and our task is to find a bounded connected domain
B ⊂ R2 with a free boundary Σ and containing the closure of A, as well as a state
function u : Ω → R, where Ω = B\Ā, that satisfies the following boundary value
problem 

−∆u = 0 in Ω,

u = 1 on Γ,

u = 0,
∂u

∂n
= λ on Σ,

(4)

where n is the outward unit normal vector to Σ.

The present study is motivated by the work of Tiihonen [9] where he computed
the shape gradient and shape Hessian of a different functional formulation of (4).
In [9], Tiihonen considered the following shape optimization formulation:

min
Σ
J(Σ) ≡ min

Σ

∫
Σ
u2
N ds (5)

where uN satisfies the conditions (3).

2 Preliminaries

The paper requires the following results and tools from shape calculus. These are
found in [1, 3]:

Theorem 2.1. Let Ω and U be nonempty bounded open connected subsets of R2

with Lipschitz continuous boundaries, such that Ω̄ ⊆ U , and ∂Ω is the union of two
disjoint boundaries Γ and Σ. Let Tt be defined as

Tt : Ū → R2, Tt(x) = x+ tV(x), x ∈ Ū , (6)
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where V belongs to Θ, defined as

Θ =
{
V ∈ C1,1(Ū ,R2) : V|Γ∪∂U = 0

}
. (7)

Then for sufficiently small t,

(1.)Tt : Ū → Ū is a homeomorphism, (4.) Γt = Tt(Γ) = Γ,
(2.)Tt : U → U is a C1,1 diffeomorphism, (5.) Σt = Tt(Σ), and
(3.)Tt : Ω→ Ωt is a C1,1 diffeomorphism, (6.) ∂Ωt = Γ ∪ Σt.

For the following functions
It(x) = detDTt(x), x ∈ Ū ,
Mt(x) = (DTt(x))−T , x ∈ Ū ,
At(x) = ItM

T
t Mt(x), x ∈ Ū ,

wt(x) = It(x)|(DTt(x))−Tn(x)|, x ∈ Σ

(8)

we have the following lemma:

Lemma 2.2. [7, 8] Consider the transformation Tt, where the fixed vector field V
belongs to Θ, defined in (7). Then there exists tV > 0 such that Tt and the functions
in (8) restricted to the interval IV = (−tV , tV ) have the following regularity and
properties:

(1.) t 7→ Tt ∈ C1(IV , C
1,1(Ū ,R2)). (8.)

d

dt
T−1
t |t=0 = −V.

(2.) t 7→ It ∈ C1(IV , C
0,1(Ū)). (9.)

d

dt
DTt|t=0 = DV.

(3.) t 7→ T−1
t ∈ C(IV , C

1(Ū ,R2)). (10.)
d

dt
(DTt)

−1|t=0 = −DV.

(4.) t 7→ wt ∈ C1(IV , C(Σ)). (11.)
d

dt
It|t=0 = div V.

(5.) t 7→ At ∈ C(IV , C(Ū ,R2×2)). (12.)
d

dt
At|t=0 = A,

(6.) There is β > 0 such that where A = (div V)I − (DV + (DV)T

At(x) ≥ βI for x ∈ U. (13.) limt→0wt = 1.

(7.)
d

dt
Tt|t=0 = V. (14.)

d

dt
wt|t=0 = divΣ V

where divΣ V = div V|Σ − (DVn) · n.

Material and shape derivatives of states

Definition 2.3. Let u be defined in [0, tV ]×U . The material derivative u̇ ∈ Hk(Ω)
of u is defined as

u̇(x) := u̇(0, x) := lim
t→0+

u(t, Tt(x))− u(0, x)

t
=

d

dt
u(t, x+ tV(x))

∣∣∣∣
t=0

if the limit exists in Hk(Ω).
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It can also be written as

u̇(x) = lim
t→0+

ut ◦ Tt(x)− u(x)

t
=

d

dt
(ut ◦ Tt(x))

∣∣∣∣
t=0

. (9)

Definition 2.4. Let u be defined in [0, tV ] × U . The shape derivative u′ ∈ Hk(Ω)
of u is defined as :

u′(x) := u′(0, x) := lim
t→0+

u(t, x)− u(0, x)

t
. (10)

if the limit exists in Hk(Ω).

It can also be written as

u′(x) = u̇(x)− (∇u ·V)(x). (11)

Domain and boundary transformations

Lemma 2.5. [10]

1. Let ϕt ∈ L1(Ωt). Then ϕt ◦ Tt ∈ L1(Ω) and
∫

Ωt
ϕt dxt =

∫
Ω ϕt ◦ TtIt dx.

2. Let ϕt ∈ L1(∂Ωt). Then ϕt ◦ Tt ∈ L1(∂Ω) and
∫
∂Ωt

ϕt dst =
∫
∂Ω ϕt ◦ Ttwt ds.

where It and wt are defined in (8).

Some tangential Calculus

Here are some properties of tangential differential operators which are used in this
work (cf. [4, 10]). Let Γ be a boundary of a bounded domain Ω ⊂ Rn.

Definition 2.6. The tangential gradient of f ∈ C1(Γ) is given by

∇Γf := ∇F |Γ −
∂F

∂n
n ∈ C(Γ,Rn), (12)

where F is any C1 the extension of f into a neighborhood of Γ.

Definition 2.7. The tangential Jacobian matrix of a vector function v ∈ C1(Γ,Rn)
is given by

DΓv = DV|Γ − (DVn)nT ∈ C(Γ,Rn×n), (13)

where V is any C1 the extension of v into a neighborhood of Γ.

Definition 2.8. For a vector function v ∈ C1(Γ,Rn), its tangential divergence on
Γ is given by

divΓ v = div V|Γ −DVn · n ∈ C(Γ), (14)

where V is any C1 the extension of v into a neighborhood of Γ.
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Shape Differentiation of Integrals

Let u ∈ L1(Ω). Suppose there exist u̇ ∈ L1(Ω) and u′ ∈ L1(Ω). Then for sufficiently
smooth Ω and V,

d

dt

∫
Ωt

u(t, x) dx

∣∣∣∣
t=0

=

∫
Ω
u′(0, x) dx+

∫
∂Ω
u(0, s)V · n ds (15)

Similarly, if u ∈ L1(Γ) and there exist u̇ ∈ L1(Γ) and u′ ∈ L1(Γ), then

d

dt

∫
Γt

u(t, s) ds

∣∣∣∣
t=0

=

∫
Γ
u′(0, s) ds+

∫
Γ
(
∂u

∂n
+ u(0, s)κ)V · n ds (16)

where κ is the mean curvature of the boundary Γ := ∂Ω.

The Eulerian derivatives

The Eulerian derivatives of a shape functional are defined as follows (cf. [9, 7, 4]):

Definition 2.9. The first-order Eulerian derivative or the shape gradient of a shape
functional J : Ω→ R at the domain Ω in the direction of the deformation field V is
given by

dJ(Ω; V) := lim
t→0+

J(Ωt)− J(Ω)

t
, (17)

if the limit exists.

Definition 2.10. The second-order Eulerian derivative or the shape Hessian of J
at the domain Ω in the direction of the deformation fields V and W is given by

d2J(Ω; V,W) = lim
s→0+

dJ(Ωs(W); V)− dJ(Ω; V)

s
(18)

if the limit exists. Here Ωs(W) is the perturbed domain Ω in the direction W.

J is said to be shape differentiable at Ω if dJ(Ω; V) exists for all V and is linear
and continuous with respect to V. It is twice shape differentiable if for all V and W,
d2J(Ω; V,W) exists and if d2J(Ω; V,W) is bilinear and continuous with respect to
V and W.

3 Main Results

Here are the main results of this paper.

Theorem 3.1. The shape gradient of the cost functional

J(Ω) =
1

2

∫
Ω
|∇(uD − uN )|2 dx



5392 Jerico B. Bacani

in the direction of the perturbation field V ∈ Θ, where the state functions uD and
uN satisfy (2), and (3), respectively, is given by

dJ(Ω; V) =
1

2

∫
Σ

(λ2 − (∇uD · n)2 + 2λκuN − (∇uN · τ)2)V · n ds

+
1

2

∫
Σ

(3α2u2
N − 4αλuN )V · n ds+

1

2

∫
Σ
−2αuNu

′
N ds. (19)

i. If α = 0, then the shape gradient of the cost functional reduces to

dJ(Ω; V) =
1

2

∫
Σ

(λ2 − (∇uD · n)2 + 2λκuN − (∇uN · τ)2)V · n ds. (20)

ii. If α = κ, the mean curvature of Σ, then the shape derivative becomes:

dJ(Ω; V) =
1

2

∫
Σ

(λ2− (∇uD ·n)2− (∇uN · τ)2)V ·n ds+
1

2

∫
Σ

3κ2u2
NV ·n ds. (21)

Proof. Using the differentiation formula (15), we get the Eulerian derivative of J(Ω)
in the direction V:

dJ(Ω; V) =

∫
Ω
∇(u′D − u′N ) · ∇(uD − uN ) dx+

1

2

∫
Σ
|∇(uD − uN )|2V · n ds

where the shape derivatives u′D and u′N (at Ω in the direction V) satisfy the following
boundary problems:


−∆u′D = 0 in Ω,

u′D = 0 on Γ,

u′D = −V · n∂uD
∂n

on Σ.

(22)


−∆u′N = 0 in Ω,

u′N = 0 on Γ,

αu′N +
∂u′N
∂n

= divΣ(V · n∇ΣuN )− α(
∂uN
∂n

+ uNκ)V · n + κλV · n on Σ.

(23)

Derivations for the boundary value problems (22) and (23) can be seen in [2, 9].

Now using Green’s identity, and the BVPs (22) and (23), we write dJ as I1 + I2
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and manipulate each integral.

I1 =

∫
Ω

∇(u′D − u′N ) · ∇(uD − uN ) dx =

∫
Ω

∇u′D · ∇(uD − uN ) dx−
∫

Ω

∇u′N · ∇(uD − uN ) dx

=

∫
Σ

u′D
∂

∂n
(uD − uN ) ds−

∫
Σ

∂u′N
∂n

(uD − uN ) ds

= −
∫

Σ

((
∂uD
∂n

)2

− ∂uD
∂n

∂uN
∂n

)
V · n ds+

∫
Σ

uN
∂u′N
∂n

ds

= −
∫

Σ

((
∂uD
∂n

)2

− ∂uD
∂n

(λ− αuN )

)
V · n ds+

∫
Σ

divΣ(V · n∇ΣuN )uN ds

−
∫

Σ

[αuN (λ− αuN + uNκ)− λuNκ]V · n ds−
∫

Σ

αu′NuN ds

I2 =
1

2

∫
Σ
|∇(uD − uN )|2V · n ds =

1

2

∫
Σ

(|∇uD|2 − 2∇uD∇uN + |∇uN |2)V · n ds

=
1

2

∫
Σ

((
∂uD
∂n

)2

− 2
∂uD
∂n

∂uN
∂n

+ (λ2 − 2αλuN + α2u2
N ) + (∇uN · τ)2

)
V · n ds

=
1

2

∫
Σ

((
∂uD
∂n

)2

− 2
∂uD
∂n

(λ− αuN ) + (λ2 − 2αλuN + α2u2
N ) + (∇uN · τ)2

)
V · n ds

Combining I1 and I2 and using the fact that∫
Σ

divΣ(V · n∇ΣuN )uN ds = −
∫

Σ
(∇uN · τ)2V · n,

we get (19).
If α = 0, then we obtain (20).
If α = κ, then u′N = 0 by using Lemma 1 in [9]. Consequently, the shape

derivative becomes (21).

Remark 3.2. For α = 0 our results coincide with our results given in [3]. In [3],
however, we did not utilize the shape derivatives of states in obtaining the shape
gradient of the functional.

Corollary 3.3. At a shape Ω∗ wherein the state function u solves the Bernoulli
free boundary problem (that is, u = uD = uN on Ω̄∗), the first derivative dJ(Ω; V)
vanishes.

Proof. At the solution of the Bernoulli problem, uD = uN = 0,
∂uD
∂τ

= 0,
∂uN
∂n

= λ

on Σ. Hence, we have

dJ(Ω; V) =
1

2

∫
Σ

(λ2 − λ2 + 0− 0)V · n ds+ 0− 0 = 0.
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We also give a result on the second order shape derivative of the functional at
the solution of the Bernoulli problem.

Theorem 3.4. If uD = uN where uD and uN satisfy the Dirichlet problem (2), and
the Robin boundary problem (3), respectively, then the second order shape derivative
d2J(Ω; V; W) of the cost functional defined by

J(Ω) =
1

2

∫
Ω
|∇(uD − uN )|2 dx

at Ω in the directions of the perturbation fields V and W is given by

d2J(Ω;V,W) =

∫
Σ

(λ2V · nS(W · n) + λ2κV · nW · n) ds+

∫
Σ

(λκu′N,WV · n + λ2κV · nW · n) ds

−
∫

Σ
(2αλu′N,WV · n + 2αλ2V · nW · n) ds−

∫
Σ

(αu′Nu
′
N,W + αλu′NW · n) ds. (24)

Here S is an operator that relates u′D and u′N as Su′D =
∂u′D
∂n

, where u′D
satisfies (22), u′N is the shape derivative of uN at Ω in the direction V and
u′N,W is the shape derivative of uN at Ω in the direction W.

i. If α = 0, then the second order shape derivative is given by

d2J(Ω; V,W) =

∫
Σ

2λ2κV ·nW ·n ds+

∫
Σ

(S(W ·n) +κS−1(κW ·n))λ2V ·n.

ii. If α = κ, then the second order shape derivative of the cost functional is
given by

d2J(Ω; V,W) =

∫
Σ

λ2V · nS(W · n) ds.

Proof. Let us decompose dJ(Ω; V) in Theorem 3.1 as dJ(Ω; V) = L + M + N. As
what we did previously, we write L as L = L1 + L2 + L3, where

L1 =
1

2

∫
Σ

(
λ2 −

(
∂uD
∂n

)2
)

V · n ds, L2 =

∫
Σ
λκuNV · n ds,

L3 = −1

2

∫
Σ

(∇uN · τ)2V · n ds

Consider another deformation field W. Analogous to the previous computation,
we obtain the following at the solution of the Bernoulli problem.

dL1(Ω; W) =

∫
Σ
λ2(V · n, (S + κI)W · n) ds,

dL2(Ω; W) =

∫
Σ

(u′N,W + λW · n)λκV · n ds, dL3(Ω; W) = 0,

where Su′D =
∂u′D
∂n , and u′D satisfies (22). Therefore at the solution,

dL(Ω; W) =

∫
Σ
λ2(V · n, (S + κI)W · n) ds+

∫
Σ

(u′N,W + λW · n)λκV · n ds.



On the shape gradient and shape Hessian 5395

Next we consider M and derive its shape gradient at Ω in the direction W.

M =
1

2

∫
Σ

(3α2u2
N − 4αλuN )V · n ds.

dM(Ω; W) =
1

2

∫
Σ

[6α2uN · u′N,W − 4αλu′N,W ]V · n

+
1

2

∫
Σ

{
∂

∂n
[(3α2u2

N − 4αλuN )V · n] + (3α2u2
N − 4αλuN )V · nκ

}
W · n.

At the solution of the Bernoulli problem,

dM(Ω; W) = −
∫

Σ
2αλu′N,WV · n−

∫
Σ

2αλ
∂uN
∂n

V · nW · n

= −2

∫
Σ
αλ(u′N,WV · n + λW · nV · n) ds.

Last but not least, we consider N and derive also its shape gradient in the
direction W.

N =
1

2

∫
Σ
−2αuNu

′
N ds.

dN(Ω; W) = −
∫

Σ

[
(αuNu

′
N )′W + (

∂

∂n
(αuNu

′
N ) + αuNu

′
Nκ)

]
W · n

= −
∫

Σ

[
αu′N,Wu

′
N + αuN (u′N )′W +

(
α
∂uN
∂n

u′N + αuN
∂u′N
∂n

+ αuNu
′
Nκ

)]
W · n.

where (u′N )′W is the second order shape derivative of the solution uN , first in the
direction of the perturbation field V, then in the direction of the perturbation field
W.

At the solution of the Bernoulli problem,

dN(Ω; W) = −
∫

Σ
[αu′N,Wu

′
N + αλu′NW · n] ds.

Combining dL(Ω; W), dM(Ω; W), and dN(Ω; W), we get (24).
Now, we consider the case α = 0. Generally, u′N satisfies the variational equation:∫

Σ
(
∂u′N
∂n

+ αu′N )ϕ =

∫
Σ
−∇ΣuN∇ΣϕV · n− α(

∂uN
∂n

+ uNκ)ϕV · n + λκϕV · n.

where ϕ ∈ H1(Ω; Γ). For this case, at the solution of the Bernoulli problem, u′N
satisfies the following reduced variational equation:∫

Σ
(
∂u′N
∂n
− λκV · n)ϕ = 0

And by the fundamental lemma of calculus of variations, we get

∂u′N
∂n
− λκV · n = 0
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or equivalently,
∂u′N
∂n

= λκV ·n. Using the Steklov-Poincare operator: Su′N =
∂u′N
∂n

,

we obtain
u′N = S−1(λκV · n) (25)

Consequently,
u′N,W = S−1(λκW · n). (26)

Substituting α = 0, (25), and (26) into (24), we get

d2J(Ω; V,W) =

∫
Σ

2λ2κV · nW · n ds+

∫
Σ

(S(W · n) + κS−1(κW · n))λ2V · n.

For α = κ, we note that u′N = 0 and u′N,W = 0 by applying Lemma 1 of [9].
Hence, we obtain

d2J(Ω; V,W) =

∫
Σ
λ2V · nS(W · n) ds.

Remark 3.5. For α = 0, our results coincides with the one presented in [1] wherein
three strategies were utilized to derive the shape Hessian of the functional.
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