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Abstract. In this paper, we propose Differential Evolution - Simulated Annealing (DESA),
a hybrid optimization algorithm for fitting autoregressive models to data. The addition of a
new strategy based on parabolic estimation to Differential Evolution (DE) algorithm and the
incorporation of the Simulated Annealing (SA) algorithm for a selection strategy makes DESA
a robust optimization algorithm. The proposed hybrid algorithm obtained acceptable solutions
particularly for AR(1) processes with unknown drift and additive outliers. Experiments on
the parameter estimation of autoregressive models showed that the proposed hybrid algorithm,
DESA has shown reliability in finding global minimum of the reference problem sets. Moreover,
we compared the performance of DESA algorithm with those of DE, SA, maximum likelihood
estimator (MLE) and ordinary least squares (OLS) on the fitting problem. Simulation results
have shown that the proposed algorithm, DESA, provides MSE lower than those of MLE and/or
OLS for almost all situations. Using 10-minute average wind speed data, DESA also obtained
a better model fit on the actual series.
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1 INTRODUCTION

Because outliers are known to bias estimated model parameters [1, 2], it is therefore impor-
tant to have procedures that will deal with such outlier effects. Outliers in time series were
first studied by Fox [3], who proposed a classification of time series outliers to type I and type
II outliers based on autoregressive model. These two types have later been renamed as addi-
tive outliers (AO) and innovational (or innovations) outliers (IO). An AO only affects a single
observation, which is either larger or smaller in value than expected. After this disturbance,
the series returns to its normal path as if nothing had happened. In contrast, an IO affects not
only the particular observation but also subsequent observations. A time series that does not
contain any outliers is called an outlier-free series. Usually, only AOs and IOs are considered
in literature, but an influential article by Tsay (1988) defines three other types of outliers as
well, namely level shifts, transient changes and variance changes [4]. Time series model iden-
tification with the presence of outliers are traditionally based on the estimated autocorrelations
and partial autocorrelations, and will in the presence of outliers therefore be misleading, unless
outliers are taken into account. These problems on model estimation of time series with outliers
have been discussed in various literatures [5, 6, 7]. Methods such as least squares and maximum
likelihood (ML) methods are both sensitive to the presence of outliers, especially AOs, whereas
various robust estimators can handle some of the problems caused by outliers [5, 8]. This pa-
per, presents a hybrid optimization algorithm, differential evolution and simulated annealing in
fitting autoregressive models to data, particularly for the first-order autoregressive process with
unknown drift and additive outliers.

Optimization algorithms inspired by the process of natural selection have been in use since
the 1950s [9], and are often referred to as evolutionary algorithms (EAs). Genetic algorithm
(GA) is one such method, and was invented by John Holland in the 1960s [10]. Genetic al-
gorithms apply logical operations, usually in bit strings of fixed or variable length, in order to
perform crossover, mutation, and selection on a population. Over the course of successive gen-
erations, the members of the population are more likely to represent a minimum of an objective
function.

EAs have become very popular as function optimizers, because they are simple, easy to im-
plement, and exhibit good and stable performance for wide range of functions. Evolutionary
computation has become an important problem solving methodology among many researchers
working in the area of computational intelligence [11]. It has been widely accepted for solving
several important practical applications in engineering, science, technology, business and com-
merce. However, global optimization of high dimentional systems remain a challenging area
of study. Researchers have to find new and extended methods which are even able to handle
complex problems within huge search domains [12]. These complex systems often require the
application of two or more optimization methods, since many of the known algorithms cannot
be adjusted to the solution of large problems. Thus, a promising approach for the development
of these methods is the intelligent combination of several powerful optimization methods by
maintaining or even enhancing the advantageous characteristics of each method. However, the
intelligent combination and application of these methods remains a difficult endeavor. We have
to find a technique which automates the combination and interaction of several optimization
algorithms [13].

Recently a number of evolutionary computing techniques such as particle swarm optimiza-
tion (PSO) [14], Differential Evolution (DE) [15], Bacterial Foraging Optimization (BFO) [16]
and Cat Swarm Optimization (CSO) [17] have been successfully applied to many fields. From
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these algorithms, DE is found to be a simple and useful alternative to GA and has been observed
to perform better for various applications such as parameter identification [18], image process-
ing [19, 20], data clustering [21], optimal designing [22], scheduling [23] and stock market
prediction [24].

In this paper, the search capabilities of DE and SA has been intermixed in an attempt to
increase success rate and improve solutions obtained without lost of robustness. In our investi-
gations, two separate experiments were done. First, we applied DE, SA and DESA algorithms
on the problem of fitting AR(1) models to simulated AR(1) processes with unknown drift and
additive outliers. The parameter estimates from these three algorithms were compared with esti-
mates using maximum likelihood estimators (MLEs) and ordinary least squares (OLS) method.
Next, we demostrated DESA algorithm for fitting autoregressive models to the wind speed data.

The paper is organized as follows: In the next section we briefly discuss the algorithms
DE, SA and DESA algorithms. Section 3 reports experiments with the AR(1) processes with
unknown drift and additive outliers using MLE, OLS, DE, SA and DESA. Application of DESA
algorithm to actual data is shown in Section 4. Finally, Section 5 summarizes findings and
concludes performance of the proposed DESA algorithm.

2 THE ALGORITHMS

Evolutionary algorithms are stochastic search methods that mimic the metaphor of natural
biological evolution. They operate on a population of potential solutions applying the prin-
ciple of survival of the fittest to produce better and better approximations to a solution. At
each generation, a new set of approximations is created by the process of selecting individuals
according to their level of fitness in the problem domain and breeding them together using oper-
ators borrowed from natural genetics [13]. This process leads to the evolution of population of
individuals that are better suited to their environment than the individuals that they were created
from, just as in natural adaptation. These algorithms model natural processes, such as selection,
recombination, mutation, migration, locality and neighborhood [11].

Differential Evolution (DE), is a robust global optimizer, able to find excellent solutions
to design problems, even in a complicated landscape. Unfortunately, it is slow to converge,
requiring more function evaluations in several applications [15]. Simulated Annealing (SA)
on the other hand is a local search algorithm able to avoid becoming trapped at local minima.
While this technique is unlikely to find the optimum solution, it can often find a very good
solution, even in the presence of noisy data [26, 27]. In this paper, the search abilities of SA
for selecting the fittest candidate solutions were used as input into the crossover stage of the DE
framework, thus the development of our proposed hybdrid algorithm, DESA [28].

2.1 Differential evolution (DE)

There are several variants of DE [11]. However, the particular variant used in this study is
the DE/rand/1/bin scheme. The function to be optimized, f , is of the form: f(x) !n → !.
Minimize the value of the objective function f(X), by optimizing the value of its parameters:
X = (x1, . . . , xD);X ∈ !D, where X denotes a vector composed of D objective function pa-
rameters. The parameters of the objective function are also subject to lower and upper boundary
constraints, x(L) and x(U), respectively: x(L)

j ≤ xj ≤ x(U)
j ; j = 1, 2, ..., D.

DE operates on a population of fixed size NP , not with a single solution for the optimization
problem. Population P of generation G contains npop solution vectors called individuals of the
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population. Each vector represents potential solution for the optimization problem: PG = Xi,G,
where i = 1, 2, . . . , NP ; and, G = 1, 2, . . . , Gmax.

The population P of generation G contains npop individuals each containing nparam parame-
ters. A member of the population may be denoted by Xi,G, where i is an index to the population
and G is the generation to which the population belongs. Thus, PG = xi,G = xj,i,G, where
i = 1, 2, . . . , NP ; and, j = 1, 2, . . . , D.

In order to establish a starting point for optimum seeking, the population must be initialized.
Often the only available knowlegde about the location of the optimum solution are the bound-
aries of the problem variables. Thus, to initialize the population P0, is to seed it within the given
boundary contraints. To seed the initial problem: PG = 0 : P0 = Xi,j,0 = ri,j(x

(U)
j −x(L)

j )+x(L)
j

where i = 1, 2, . . . , npop; j = 1, 2, . . . , nparam, and r denotes to a uniformly distributed random
value within the range [0.0,1.0], chosen for each j.

From the first generation forward, the population of the following generation PG+1 is created
in the following on the basis of the current population PG. First, a trial population for the
subsequent generation, P ′

G+1, is generated as follows:

x
′

i,j,G+1 =



















xi,j,G + F (xAi,j,G − xBi,j,G)
if ri,j ≤ Cr ∨ j = Di

xi,j,G otherwise,

(1)

where i = 1, 2, . . . , npop; D = 1, 2, . . . , nparam; A = 1, 2, . . . , npop; B = 1, 2, . . . , npop;
C = 1, 2, . . . , npop; Ai '= Bi '= Ci '= i; Cr ∈ [0, 1]; F ∈ [0, 2]; and r ∈ [0, 1].

A, B, and C are randomly chosen indeces referring to three randomly chosen individuals of
population. These indeces are mutually different from each other and also different from the
running index i. New, random values for A, B, C are assigned for each of index i (for each
individual). A new value for random number r is assigned for each value of index j (for each
chromosome). The index D refers to a randomly chosen chromosome of each individual vector
X′

G+1 differs from each counterpart in the previous generation, XG. A new random (integer)
value is assigned to D for each value of index i (for each individual). F , CR and NP are
DE fixed control parameters in the search process. F is a real valued factor in range [0.0, 2.0]
that controls the amplification of differential variations and CR is a real-valued crossover fac-
tor in range [0.0, 1.0] controlling the probability to choose mutated value for x instead of its
current value. Generally, both F and CR affect the convergence velocity and robustness of
the search process. Their optimal values are dependent both on the objective function, f(X),
characteristics and on the population size NP [30].

The selection scheme of DE also differs from the other EAs. On the basis of the current
population, PG, and the temporary population, P ′

G+1, the population of the next generation,
PG+1 is created as follows:

Xi,G+1 =

{

X
′
i,G if fcost(X

′
i,G+1) ≤ fcost(Xi,G)

Xi,G otherwise
(2)

Therefore, every individual of the trial population is compared with its counterpart in the
current population. The one with the lower value of the cost function fcost(X) will survive to
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the population of the next generation. Thus, every individual of the next generation is as good
or better than its counterpart in the current generation. The interesting feature concerning DE’s
selection scheme is that a trial vector is not compared against all the individuals in the current
population, but only against one individual, against its counterpart in the current population
[30, 31].

2.2 Simulated annealing (SA)

SA are based on an analogy with a physical phenomenon of the annealing process of metals.
When metals are cooled slowly enough, nature is able to find the minimum energy crystalline
structure by redistribution of the atoms as they lose mobility. If the temperature is decreased too
quickly, a liquid metal rather end up in an amorphous state with a higher energy and not in a pure
crystal. The algorithm to find minimum temperature can be used in the search for a minimum
in a more general system. SA algorithms randomly generate at each iteration a candidate point
and through a random mechanism controlled by a parameter called temperature, they decide
whether to move to candidate point or to stay in the current one at the next iteration [32].

The objective function in mathematical optimization is analogous to energy in physical sys-
tem, and the global minimum to the minimum energy state. An annealing schedule describes
the temperature parameter T , and gives the rules for lowering it as the search progresses. The
annealing schedule decreases T for each successive population. The algorithm employs a ran-
dom search, which not only accepts decreases in the objective function f(x), but also some
increases. The later are accepted with a probability e−(∆f)T , where ∆f , is the increase in f ,
and T is given by the annealing schedule. Thus, the control space is randomly examined among
the local minima of depth less than about T . As T is lowered, the number of such minima
qualifying for frequent visits is gradually reduced. The major advantage of this algorithm over
the other methods is the ability to avoid becoming trapped at local minima [26].

SA algorithm starts with an initial guess of the parameters and a temperature value T . The
amounts of the optimization parameters are randomly varied proportional to T , and the objective
function are calculated for each variation. The change in the objective function, may be denoted
by ∆E. If ∆E < 0, we have a set of parameters that results in a better value of the objective
function; then, this set is retained and forms the basis of the next variation. However, a set of
parameters resulting in a worse or an increased objective function might be retained depending
on how large ∆E is and where this lies on a known probability distribution, P (∆E). A random
number between 0 and 1 is drawn, and if this is less than P (∆E); then, the set of parameters
are retained. For some fixed number of times, this process is repeated.

After which, the value of T is decreased by an acceptably small amount and the whole set
of iterations is done again. Smaller value of T gives shorter range of varying the parameters.
After a number of iterations and when T is sufficiently small, a near optimal set of parame-
ters will have been found. Simulated annealing surely identifies the global minimum from the
several local minima of the objective function. However, attaining convergence is intense and
computationally long [32].

The difference between a simple random walk and a simulated annealing algorithm occurs
mainly in the selection of a new solution. The generic random walk looks for a smaller objective
function value, and steps in a direction in a parameter space corresponding to a decrease in E.
Simulated annealing allows increase in E with a known probability, given by Boltzmann distri-
bution: P (∆E) = e(

−∆E
T ), where P (∆E) is a probability distribution giving the probability of

making an energy increasing step having magnitude ∆E. This is used in simulated annealing
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algorithm in the form of acceptance criterion, returning true if the ∆E will be accepted and the
step in parameter space made, and false otherwise. To do this, simply draw a random number
between 0 and 1 (a probability) and see if it is less than P (∆E); return true if so [33].

2.3 Differential evolution - simulated annealing (DESA) algorithm

The DESA algorithm introduced in this paper is a combination of the DE and SA algorithms.
The combination is done by incorporting an SA-like selection criteria in a DE framework to
form the DESA algorithm. Thus, the DESA algorithm is characterized by self-organization,
mutation, crossover, and SA-like selection scheme of the strategy parameters. The SA-like
selection of DESA is given by the equation:

Φi,G+1 =















Φ
′
i,G if R(Φ

′
i,G+1) ≤ R(Φi,G)

or e−[
R(Φ

′
i,G+1)−R(Φi,G)

Treduct
] > rand[0, 1]

Φi,G otherwise

(3)

where Φ is the parameter vector and R is the fitness function. If the trial vector has the lower
value of the cost function R(Φ), it will survive to the population of the next generation. But, if
the trial vector has the higher value of the cost function, then it is subjected to the Metropolis
Criterion as done in SA. The interesting points in this DESA’s selection scheme are that a trial
vector is not compared against every individual, but only against one individual in the current
population; and that besides accepting improvements in cost, it also to a limited extent accepts
deteriorations in cost of the objective function [31].

3 AUTOREGRESSIVE PROCESS

Assume that the observed series X1, X2, . . . , XT is generated by a univariate autoregressive
process of order p, i.e.,

Xt − µ =
p
∑

k=1

φk(Xt−k − µ) = at, (4)

where {at} is a normal white noise process with mean zero and variance σ2. Besides σ2 the
model also contains the parameters φ1,φ2, . . . ,φp and µ to be estimated on the basis of obser-
vation. It is assumed that the AR(p) process represents a stationary model. This requirement is
satisfied if the roots of the equation

1−
p
∑

k=1

φkB
k = 0 (5)

lie outside the unit circle. In a stationary case, µ = E{Xt}, i.e., the mean of {Xt}.
Technically, we can therefore formulate the AR(p) model as follows:

Xt = φ1Xt−1 + φ2Xt−2 + . . . ,φpXt−p + εt (6)

where Xt denotes the time series and εt indicates a white-noise process. The value of p is called
the order of the AR model. If p = ∞, then the process is called infinite AR process. So,
an autoregressive model corresponds simply to a linear regression of the current value of the
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series against one or more prior values of the series, and therefore be analyzed among other
methods with the standard linear least squares technique, where the resulting estimation of the
parameters, Φ, has a straight forward interpretation.

Hence, for AR(p) process, the p number of parameters, φ1,φ2, . . . ,φp can be estimated to
minimize the sum of the squared differences between the data points and the AR(p) process.
There are many optimization techniques that will perform efficiently [34]. However, it is diffi-
cult to fit an autoregressive process to a set of data [35].

The objective is to minimize the sum of the squared differences between an estimated AR(p)
process, X̂t, and the given series Xt for t = 1, 2, . . . , T . The order of the process, p, is not
known in advance. The value of the AR(p) process at a value xt can be thought of as a function

X̂T (Φ, x) =
p
∑

k=1

φkXt−k, (7)

where X̂T is an AR(p) process with parameters Φ = φ1,φ2, . . . ,φp. The objective function can
then be expressed as

R(Φ) =
T
∑

i=1

(Xi − X̂i)
2. (8)

3.1 Gaussian AR(1) process with an unknown drift and additive outliers

Suppose an outlier-free time series {Xt; t = 1, 2, . . .} follows an AR(1) model:

Xt = µ+ φ(Xt−1 − µ) + εt (9)

where µ is the population mean, φ is an autoregressive parameter, φ ∈ (−1, 1), εt are unobserv-
able independent errors and identically N(0, σ2

ε ). For |φ| = 1, the AR(1) model is called the
random walk model, otherwise it is called a stationary AR(1) process when |φ| < 1. For φ close
to 1.0 or near a non-stationary process, the mean and variance of the model change over time.

Let the observed time series be denoted by {Yt}. In the simple case when {Xt} has a single
additive outlier at time point T (1 < T < n), model 9 can be modified as to

Yt = Xt + δI(T )
t (10)

where δ represents the magnitude of the additive outlier effect and I(T )
t is an indicator variable

such that

I(T )
t =

{

1, if t = T ;
0, if t '= T .

(11)

3.2 Experiments on fitting AR(1) processes with unknown drift and additive outliers
using MLE, DE, SA and DESA

We examine the performance of the DE, SA, and DESA for the Gaussian AR(1) process with
unknown drift and additive outliers, with particular emphasis on comparisons with MLE and
OLS estimates. Data are generated from an AR(1) process with an unknown drift and additive
outliers. The following parameter values were used: (µ, σ2

ε ) = (0, 1);φ = 0.1, 0.2, . . . , 0.9; σ2 =
1 − φ2; sample sizes, n = 25, 50, 100, 250; the magnitude of additive outliers effect, δ = 3σε
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and 5σε; percentage additive outliers, p = 5% and 10%; and, numbers of runs M=10000. In ad-
dition, the additive outliers occured randomly. All simulations were performed using programs
written in the R statistical software, DEoptim package [39] and GenSA package [40]. An ex-
ample of AR(1) process with 100 observations with 10% random additive outliers of magnitude
5 times the standard deviation is shown in Figure 1.
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Figure 1: Graph of autoregressive process with unknown drift and additive outliers: Yt = Xt+δI(T )
t with T = 100,

φ = 0.1, p = 0.1, and δ = 5.

3.3 Parameter estimates for the AR(1) with AOs

Tables 1-2 and Figures 2-5 show the estimated MSEs of all estimators, φ̂MLE , φ̂OLS , φ̂DE ,
φ̂SA, and φ̂DESA. As can be seen from Tables 1-2 and Figures 2-5, the MSE of φ̂MLE and φ̂OLS

are larger than the MSEs of the other estimators especially when φ is close to 1.0 and for small
sample sizes. These values decrease as sample sizes get larger. The value for φ̂MLE performs
well for n ≥ 50. On the other hand, the hybrid estimator, φ̂DESA, provides the lowest MSE in all
scenarios except when φ = 0.1 and small sample sizes (n=25 and 50). Additionally, the φ̂DESA

performs very well with respect to the other four estimators. The proposed estimator, φ̂DESA,
dominates all estimators since the MSE of the proposed estimator is the lowest for almost all
cases. For the rest, the MSE of φ̂SA is less than that of φ̂DE and φ̂MLE and φ̂OLS for almost all
situations. The φ̂SA often ranks the second best following the proposed estimator. Furthemore,
the MSEs showed in Table 1 are less than those reported in Table 2 because time series data of
Table 1 have less outliers.
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δ = 3σε | δ = 5σε

n φ MLE OLS DE SA DESA MLE OLS DE SA DESA
25 - .1 0.0727 0.0830 0.0364 0.0187 0.0184 0.1157 0.0391 0.0340 0.0343 0.0170

.2 0.0717 0.0673 0.0389 0.0233 0.0237 0.0981 0.0235 0.0407 0.0409 0.0243

.3 0.0785 0.0502 0.0438 0.0368 0.0327 0.0935 0.0144 0.0532 0.0539 0.0387

.4 0.0892 0.0392 0.0496 0.0521 0.0423 0.1001 0.0185 0.0688 0.0687 0.0574

.5 0.1010 0.0401 0.0555 0.0687 0.0513 0.1152 0.0308 0.0869 0.0866 0.0778

.6 0.1133 0.0500 0.0614 0.0861 0.0588 0.0834 0.0506 0.1056 0.1060 0.0986

.7 0.1187 0.0739 0.0647 0.0943 0.0625 0.1780 0.0739 0.1198 0.1210 0.1145

.8 0.1265 0.1062 0.0606 0.0922 0.0597 0.2190 0.1084 0.1224 0.1245 0.1193

.9 0.1289 0.1589 0.0481 0.0876 0.0481 0.2384 0.1639 0.1032 0.1031 0.0989
50 .1 0.0390 0.0391 0.0186 0.0190 0.0111 0.0106 0.0267 0.0186 0.0187 0.0103

.2 0.0346 0.0235 0.0209 0.0206 0.0161 0.0158 0.0307 0.0249 0.0246 0.0180

.3 0.0365 0.0144 0.0252 0.0253 0.0226 0.0225 0.0244 0.0368 0.0368 0.0321

.4 0.0424 0.0185 0.0302 0.0301 0.0295 0.0292 0.0300 0.0524 0.0521 0.0492

.5 0.0494 0.0308 0.0356 0.0349 0.0354 0.0352 0.0471 0.0689 0.0687 0.0665

.6 0.0541 0.0506 0.0394 0.0398 0.0394 0.0392 0.0770 0.0857 0.0861 0.0837

.7 0.0568 0.0740 0.0398 0.0395 0.0401 0.0397 0.1178 0.0950 0.0943 0.0937

.8 0.0533 0.1084 0.0369 0.0362 0.0356 0.0368 0.1730 0.0921 0.0924 0.0907

.9 0.0462 0.1639 0.0252 0.0253 0.0256 0.0252 0.2479 0.0683 0.0682 0.0665
100 .1 0.0206 0.0159 0.0100 0.0100 0.0066 0.0460 0.0196 0.0103 0.0102 0.0065

.2 0.0146 0.0070 0.0118 0.0118 0.0106 0.0261 0.0112 0.0164 0.0164 0.0138

.3 0.0169 0.0092 0.0154 0.0155 0.0151 0.0227 0.0145 0.0276 0.0277 0.0261

.4 0.0235 0.0197 0.0197 0.0196 0.0196 0.0357 0.0321 0.0423 0.0421 0.0416

.5 0.0298 0.0345 0.0240 0.0238 0.0240 0.0594 0.0617 0.0584 0.0579 0.0583

.6 0.0345 0.0507 0.0274 0.0274 0.0271 0.0830 0.0995 0.0735 0.0732 0.0725

.7 0.0348 0.0684 0.0271 0.0271 0.0270 0.0958 0.1456 0.0801 0.0795 0.0791

.8 0.0309 0.0925 0.0228 0.0230 0.0231 0.0926 0.2052 0.0734 0.0735 0.0731

.9 0.0218 0.1340 0.0141 0.0140 0.0142 0.0685 0.2785 0.0481 0.0478 0.0486
250 .1 0.0076 0.0037 0.0041 0.0041 0.0035 0.0274 0.0055 0.0046 0.0046 0.0038

.2 0.0053 0.0040 0.0060 0.0060 0.0060 0.0106 0.0065 0.0107 0.0064 0.0106

.3 0.0115 0.0112 0.0093 0.0093 0.0095 0.0196 0.0211 0.0217 0.0123 0.0219

.4 0.0171 0.0200 0.0116 0.0134 0.0137 0.0366 0.0461 0.0362 0.0212 0.0363

.5 0.0213 0.0294 0.0173 0.0173 0.0175 0.0622 0.0773 0.0518 0.0309 0.0519

.6 0.0236 0.0406 0.0163 0.0199 0.0199 0.0652 0.1135 0.0652 0.0391 0.0648

.7 0.0231 0.0545 0.0196 0.0198 0.0196 0.0809 0.1557 0.0704 0.0420 0.0699

.8 0.0187 0.0721 0.0156 0.0157 0.0155 0.0719 0.2061 0.0621 0.0361 0.0622

.9 0.0106 0.0988 0.0081 0.0080 0.0082 0.0667 0.2732 0.0351 0.0196 0.0354

Table 1: The estimated MSEs of φ̂MLE , φ̂OLS , φ̂DE , φ̂SA, and φ̂DESA when percentage of additive outliers is
5%. Numbers written in bold are the least MSEs obtained for each parameter with magnitude of outliers 3σ and
5σ.
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δ = 3σε | δ = 5σε

n φ MLE OLS DE SA DESA MLE OLS DE SA DESA
25 .1 0.1203 0.0903 0.0352 0.0362 0.0195 0.2687 0.0901 0.0331 0.0330 0.0188

.2 0.0954 0.0814 0.0389 0.0389 0.0236 0.2098 0.0790 0.0399 0.0396 0.0238

.3 0.0852 0.0695 0.0465 0.0477 0.0342 0.1636 0.0984 0.0570 0.0576 0.0404

.4 0.0866 0.0621 0.0580 0.0582 0.0490 0.1352 0.1077 0.0801 0.0806 0.0655

.5 0.1004 0.0694 0.0723 0.0715 0.0655 0.1308 0.1289 0.1104 0.1109 0.0973

.6 0.1237 0.0820 0.0846 0.0859 0.0802 0.1506 0.1670 0.1445 0.1450 0.1315

.7 0.1529 0.1143 0.0936 0.0952 0.0908 0.2034 0.1965 0.1727 0.1745 0.1639

.8 0.1767 0.1637 0.0940 0.0943 0.0927 0.2747 0.2499 0.1875 0.1883 0.1810

.9 0.1880 0.2543 0.0762 0.0757 0.0756 0.3549 0.3623 0.1685 0.1680 0.1615
50 .1 0.0807 0.0441 0.0192 0.0192 0.0539 0.2114 0.0478 0.0182 0.0184 0.0120

.2 0.0517 0.0315 0.0217 0.0214 0.0494 0.1484 0.0460 0.0242 0.0240 0.0182

.3 0.0388 0.0230 0.0288 0.0287 0.0477 0.1022 0.0499 0.0401 0.0400 0.0349

.4 0.0418 0.0274 0.0383 0.0380 0.0477 0.0785 0.0634 0.0633 0.0629 0.0592

.5 0.0575 0.0451 0.0497 0.0497 0.0484 0.0807 0.0862 0.0919 0.0918 0.0883

.6 0.0754 0.0750 0.0607 0.0608 0.0452 0.1071 0.1268 0.1230 0.1226 0.1196

.7 0.0905 0.1128 0.0659 0.0659 0.0355 0.1511 0.1814 0.1464 0.1461 0.1439

.8 0.0931 0.1659 0.0628 0.0632 0.0287 0.1935 0.2561 0.1544 0.1546 0.1526

.9 0.0813 0.2461 0.0451 0.0451 0.0282 0.1984 0.3611 0.1244 0.1237 0.1244
100 .1 0.0558 0.0183 0.0100 0.0100 0.0278 0.1723 0.0228 0.0097 0.0097 0.0073

.2 0.0266 0.0115 0.0124 0.0123 0.0254 0.1072 0.0231 0.0154 0.0152 0.0133

.3 0.0183 0.0136 0.0187 0.0187 0.0302 0.0630 0.0298 0.0304 0.0303 0.0291

.4 0.0295 0.0291 0.0278 0.0277 0.0343 0.0487 0.0519 0.0531 0.0529 0.0526

.5 0.0475 0.0540 0.0381 0.0381 0.0376 0.0675 0.0880 0.0808 0.0806 0.0810

.6 0.0620 0.0840 0.0474 0.0474 0.0398 0.1104 0.1394 0.1102 0.1096 0.1093

.7 0.0671 0.1204 0.0508 0.0509 0.0382 0.1543 0.2038 0.1310 0.1309 0.1304

.8 0.0610 0.1666 0.0459 0.0460 0.0289 0.1694 0.2870 0.1336 0.1335 0.1323

.9 0.0440 0.2347 0.0292 0.0291 0.0123 0.1364 0.3884 0.0977 0.0976 0.0976
250 .1 0.0373 0.0049 0.0046 0.0041 0.0037 0.1438 0.0088 0.0040 0.0040 0.0036

.2 0.0114 0.0056 0.0111 0.0064 0.0062 0.0753 0.0139 0.0093 0.0093 0.0091

.3 0.0167 0.0177 0.0217 0.0123 0.0124 0.0409 0.0298 0.0238 0.0236 0.0241

.4 0.0311 0.0362 0.0362 0.0212 0.0210 0.0512 0.0632 0.0461 0.0460 0.0463

.5 0.0430 0.0576 0.0518 0.0309 0.0307 0.0927 0.1102 0.0733 0.0732 0.0733

.6 0.0504 0.0821 0.0652 0.0391 0.0384 0.1327 0.1690 0.1013 0.1012 0.1007

.7 0.1515 0.1110 0.0704 0.0420 0.0411 0.1540 0.2366 0.1206 0.1209 0.1205

.8 0.0436 0.1474 0.0621 0.0361 0.0356 0.1475 0.3182 0.1201 0.1200 0.1194

.9 0.0249 0.1974 0.0351 0.0196 0.0196 0.0987 0.4137 0.0792 0.0792 0.0798

Table 2: The estimated mean square errors (MSEs) of φ̂MLE , φ̂OLS , φ̂DE , φ̂SA, and φ̂DESA when percentage of
additive outliers is 10%. Numbers written in bold are the least MSEs obtained for each parameter with magnitude
of outliers 3σ and 5σ.
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Figure 2 shows the graphs of MSEs when percentage of outliers if 5%, magnitude of outliers
effect is 3σ and lengths of series are 25, 50, 100 and 250. Note that the resulting MSEs of φ̂MLE ,
represented by line1, are generally higher when the lengths of series are 25 and 50; lower when
length of series is 100; and even lower when length is 250. These observations imply that MSEs
obtained by φ̂MLE consistently get lower as the lengths of the series get longer. Similarly, the
OLS estimator, φ̂OLS , obtained lower MSEs (line2) when n is large, particularly for φ values
lower than 0.5; but, not when φ are greater than 0.5. Using OLS, the MSEs go larger as the φ
values get closer to 1. However, MSEs for φ̂OLS are lowest at 0.3, 0.4 and 0.5 for shorter series
of lengths 25 and 50. For almost all situations, the three algorithms, DE, SA, and DESA have
lower MSEs (line3, line 4, and line5, respectively), with DESA having the lowest, especially
when n=250.

Figure 2: The estimated mean square errors (MSEs) of φ̂MLE , φ̂OLS , φ̂DE , φ̂SA, and φ̂DESA when percentage of
additive outliers is 5% and magnitude of AOs effect is 3σe. Lines numbered 1, 2, 3, 4, and 5 correspond to φ̂MLE ,
φ̂OLS , φ̂DE , φ̂SA, and φ̂DESA, respectively.
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Figure 3 is similar to Figure 2, but this time the magnitude of outliers effect is 5σ. Note that
the resulting MSEs for the estimator, φ̂MLE (line1) are getting lower as the length of series is
getting longer. However, the MSEs are still higher compared to those of DE, SA, and DESA.
Also, φ̂OLS (line2), performs best when n=25 at wider range of phi values from 0.3 up to 0.8.
When length of series is increase to 50, 100 and 250, OLS resulted to greater MSEs when φ
values are greater than 0.5. Unfortunately, MSEs using OLS consistently get higher as φ values
reach 1. The three algorithms, DE, SA, and DESA have lower and relatively closer MSEs, with
SA having the lowest MSEs especially when when n=250.

Figure 3: The estimated mean square errors (MSEs) of φ̂MLE , φ̂OLS , φ̂DE , φ̂SA, and φ̂DESA when percentage of
additive outliers is 5% and magnitude of AOs effect is 5σe. Lines numbered 1, 2, 3, 4, and 5 correspond to φ̂MLE ,
φ̂OLS , φ̂DE , φ̂SA, and φ̂DESA, respectively.
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Figure 4 shows the MSEs obtained from the five algorithms, when percentage of outliers is
increased to 10% and magnitude is 3σ. Note that when n=25, OLS has the highest MSEs; but
these MSEs consistently get lower as the length of the series increases. However, the MSEs are
still higher compared to those of DE, SA and DESA, even when n is 250. Also, φ̂OLS (line2),
performs best when n=50 and when φ values are 0.3 up to 0.5. When length of series was
increased to 50, 100 and 250, OLS resulted to greater MSEs when φ values were greater than
0.5 and consistently went higher as φ reached 1. In almost all situations, DESA has the lowest
MSEs. However, differences in MSEs for the DE, SA and DESA and not significantly visible
when n=250.

Figure 4: The estimated mean square errors (MSEs) of φ̂MLE , φ̂OLS , φ̂DE , φ̂SA, and φ̂DESA when percentage of
additive outliers is 5% and magnitude of AOs effect is 5σe. Lines numbered 1, 2, 3, 4, and 5 correspond to φ̂MLE ,
φ̂OLS , φ̂DE , φ̂SA, and φ̂DESA, respectively.
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Figure 5 shows that when both percentage and magnitude of outliers effect were increased to
10% and 5σ, respectively, MSEs for φ̂MLE (line1) were generally higher when φ values are 0.1,
0.2 and 0.3; while, φ̂OLS ( line2) obtained the highest MSEs at phi values greater than 0.5. For
almost all values of φ, and even with all the different lengths of series, the three algorithms, DE,
SA, and DESA, obtained MSEs (line3, line4, and line5, respectively) which are relatively lower
compared to those of MLE and OLS. Though hardly visible, DESA have the lowest MSEs for
almost all situations.

Figure 5: The estimated mean square errors (MSEs) of φ̂MLE , φ̂OLS , φ̂DE , φ̂SA, and φ̂DESA when percentage of
additive outliers is 10% and magnitude of AOs effect is 5σe. Lines numbered 1, 2, 3, 4, and 5 correspond to φ̂MLE ,
φ̂OLS , φ̂DE , φ̂SA, and φ̂DESA, respectively.
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4 DESA ALGORITHM ON WIND SPEED DATA

In this section, we applied the proposed estimator to wind speed data taken from Security
Control and Data Acquisition (SCADA) wind farm. The real data set is a 10-minute average
wind speed recorded 3 consecutive days in June 2013 giving a total of 432 observations. The
time series plot, the ACF and PACF, as shown in Figure 6, suggest that AR(1) model is suitable.
Test of stationarity of the series is done using Dickey-Fuller’s test. In order to assess the per-
formance of our proposed DESA algorithm in fitting a first-order autoregressive model to the
actual data, we also obtained parameter estimates using MLE, OLS, DE and SA. The parameter
estimates and their corresponding square errors are shown in Table 3.
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Figure 6: Three days 10-minute average wind speed.

As presented in Table 3, DESA has the lowest standard error (SE). Thus, we may model the
three days 10-minute average wind speed as AR(1) process, with φ̂1 = 0.5718. This provides an
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improved model fit by about 50.37%, 50.52%, 1.7%, or 1.56% decrease in standard error, when
using any of φ̂MLE , φ̂OLS , φ̂DE , and φ̂SA, respectively. The application to a real data on wind
speed demonstrates that DESA provides good and even better alternative parameter estimates
for the fitting problem. However, estimates obtained by DE and SA algorithms are comparable
to DESA algorithms.

Estimator Estimate, φ̂1 SE
φ̂MLE 0.5614 0.03961
φ̂OLS 0.5628 0.03973
φ̂DE 0.5705 0.02000
φ̂SA 0.5707 0.01997
φ̂DESA 0.5718 0.01966

Table 3: The parameter estimates, φ̂1, and standard errors (SEs) obtained by MLE, OLS, DE, SA and DESA for
the 10-minute average wind speed data.

5 CONCLUSIONS

The addition of a new strategy based on DE and the incorporation of the SA algorithm for a
selection strategy makes DESA a robust optimization algorithm. The proposed hybrid algorithm
obtained acceptable solutions particularly for AR(1) processes with unknown drift and additive
outliers. DESA has shown reliability in finding global minimum of the reference problem sets.
Simulation results have shown that DESA provides MSE lower than those of MLE and/or OLS
for almost all situations. It also obtained comparable performance on fitting AR(1) models to
the 10-minute average wind speed.
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