Factorizations of Lorentz Matrices

Edna N. Gueco
Department of Mathematics and Computer Science
University of the Philippines Baguio
Baguio City, Philippines
edna.gueco@upb.edu.ph

Dennis I. Merino
Department of Mathematics
Southeastern Louisiana University
Hammond, LA, USA
dmerino@selu.edu

Agnes T. Paras
Institute of Mathematics
University of the Philippines Diliman
Quezon City, Philippines
agnes@math.upd.edu.ph

Abstract

For a nonnegative integer $k \leq n$, let $L_{k} \equiv I_{k} \oplus-I_{n-k}$. An $A \in M_{n}(\mathbb{C})$ is called Lorentz if $L_{k} A^{*} L_{k}=A^{-1}$. Let $\mathcal{O}_{L_{k}}$ be the set of all Lorentz matrices. We show that every $A \in \mathcal{O}_{L_{k}}$ has a polar decomposition $A=P U$, where P is positive definite, U is unitary, and both P and U are in $\mathcal{O}_{L_{k}}$. We also show that for every $A \in \mathcal{O}_{L_{k}}$, there exist nonnegative integers r and s, unitary $P, Q \in \mathcal{O}_{L_{k}}$, and positive definite diagonal $D, E \in M_{k-r}(\mathbb{C})$ such that $k-r=n-k-s, D^{2}-E^{2}=I_{k-r}$, and $A=P\left(I_{r} \oplus\left[\begin{array}{ll}D & E \\ E & D\end{array}\right] \oplus I_{s}\right) Q^{*}$.

1 Introduction

Our notation is standard as in $[3,4]$. We let $M_{n}(\mathbb{C})$ be the set of all n-by- n complex matrices, and we let \mathcal{H}_{n} be the set of all nonsingular Hermitian $H \in M_{n}(\mathbb{C})$. Let $S \in$ $M_{n}(\mathbb{C})$ be nonsingular. Define $\Lambda_{S}: M_{n}(\mathbb{C}) \rightarrow M_{n}(\mathbb{C})$ by $\Lambda_{S}(A)=S^{-1} A^{*} S$. One checks that for every $A, B \in M_{n}(\mathbb{C})$, we have $\Lambda_{S}(A B)=\Lambda_{S}(B) \Lambda_{S}(A)$. In particular, for every positive integer k, we have $\Lambda_{S}\left(A^{k}\right)=\left(\Lambda_{S}(A)\right)^{k}$. Now, for every $\alpha, \beta \in \mathbb{C}$, we have $\Lambda_{S}(\alpha A+\beta B)=\bar{\alpha} \Lambda_{S}(A)+\bar{\beta} \Lambda_{S}(B)$. Hence, if $p(x)$ is a polynomial with real coefficients, then $\Lambda_{S}(p(A))=p\left(\Lambda_{S}(A)\right)$.

One checks that $\Lambda_{S}(A)=I$ if and only if $A=I$. It follows that if A is nonsingular, then $\left(\Lambda_{S}(A)\right)^{-1}=\Lambda_{S}\left(A^{-1}\right)$. Notice that $\Lambda_{S}\left(\Lambda_{S}(A)\right)=S^{-1} S^{*} A S^{-*} S$. Hence, if $S \in \mathcal{H}_{n}$, then for every $A \in M_{n}(\mathbb{C})$, we have $\Lambda_{S}\left(\Lambda_{S}(A)\right)=A$.

Lemma 1. Let $S \in M_{n}(\mathbb{C})$ be nonsingular. Then $\Lambda_{S}\left(\Lambda_{S}(A)\right)=A$ for every $A \in M_{n}(\mathbb{C})$ if and only if there exists $H \in \mathcal{H}_{n}$ such that $\Lambda_{S}=\Lambda_{H}$.

Proof. The converse has just been shown. For the forward implication, suppose that $\Lambda_{S}\left(\Lambda_{S}(A)\right)=A$ for every $A \in M_{n}(\mathbb{C})$. Then, we have $S^{-1} S^{*} A=A S^{-1} S^{*}$, so that there exists a nonzero $\alpha \in \mathbb{C}$ such that $S^{-1} S^{*}=\alpha I$. Hence, $S^{*}=\alpha S$ or $S=\frac{1}{\alpha} S^{*}$. Observe now that $\alpha S=S^{*}=\left(\frac{1}{\alpha} S^{*}\right)^{*}=\frac{1}{\bar{\alpha}} S$, so that $\alpha \bar{\alpha} S=S$. Thus, $|\alpha|=1$ and there exists $\theta \in \mathbb{R}$ such that $\alpha=e^{i \theta}$. Set $H \equiv e^{\frac{i \theta}{2}} S$ and notice that $H^{*}=e^{-\frac{i \theta}{2}} S^{*}=e^{\frac{i \theta}{2}} S=H$ so that $H \in \mathcal{H}_{n}$. Moreover, $\Lambda_{H}(A)=H^{-1} A^{*} H=e^{-\frac{i \theta}{2}} S^{-1} A^{*} e^{\frac{i \theta}{2}} S=S^{-1} A^{*} S=\Lambda_{S}(A)$.

Let $U \in M_{n}(\mathbb{C})$ be unitary. Then $U^{*}=U^{-1}$. Notice that $U^{*}=\Lambda_{H}(U)$ when $H=I$.
Definition 2. Let $H \in \mathcal{H}_{n}$ be given. A given $B \in M_{n}(\mathbb{C})$ is called Λ_{H} orthogonal if B is nonsingular and $\Lambda_{H}(B)=B^{-1}$.

Let $H \in \mathcal{H}_{n}$ be given. A Λ_{H} orthogonal matrix is also called H-unitary [6]. We denote by \mathcal{O}_{H} the set of all Λ_{H} orthogonal matrices. Let $A, B \in \mathcal{O}_{H}$ be given. Then $\Lambda_{H}(A B)=$ $\Lambda_{H}(B) \Lambda_{H}(A)=B^{-1} A^{-1}=(A B)^{-1}$, so that \mathcal{O}_{H} is a group under multiplication. We study \mathcal{O}_{H}. Now, for given $H, G \in \mathcal{H}_{n}$, there exists a nonsingular $X \in M_{n}(\mathbb{C})$ such that $H=X^{*} G X$ if and only if the inertia of H (number of positive and negative eigenvalues) is the same as the inertia of G. For such H and G, we have $A^{-1}=H^{-1} A^{*} H$ if and only if $\left(X A X^{-1}\right)^{-1}=\left(X H^{-1} X^{*}\right)\left(X^{-*} A^{*} X^{*}\right)\left(X^{-*} H X^{-1}\right)=G^{-1}\left(X A X^{-1}\right)^{*} G$. Thus, $A \in \mathcal{O}_{H}$ if and only if $X A X^{-1} \in \mathcal{O}_{G}$,

Lemma 3. Let $H, G \in \mathcal{H}_{n}$ be given. Suppose that H and G have the same inertia, so that there exists a nonsingular $X \in M_{n}(\mathbb{C})$ such that $H=X^{*} G X$. Then $A \in \mathcal{O}_{H}$ if and only if $X A X^{-1} \in \mathcal{O}_{G}$.

Let $H \in \mathcal{H}_{n}$ be given. There exist a nonnegative integer k and a nonsingular $X \in M_{n}(\mathbb{C})$ such that $L_{k} \equiv I_{k} \oplus-I_{n-k}$ and $H=X^{*} L_{k} X$. Notice that $L_{k} \in \mathcal{H}_{n}$. An $A \in \mathcal{O}_{L_{k}}$ is also called a Lorentz matrix $[1,2,6]$. It is a generalization of unitary matrices to the indefinite product induced by L_{k}. We note that there are two such indefinite products. Let $x=\left[x_{i}\right] \in \mathbb{C}^{n}$ be given. One such indefinite product is given by $\langle x, x\rangle_{1, L_{k}}=x^{T} L_{k} x=$ $x_{1}^{2}+\cdots+x_{k}^{2}-x_{k+1}^{2}-\cdots-x_{n}^{2}$. The other indefinite product is given by $\langle x, x\rangle_{2, L_{k}}=$ $x^{*} L_{k} x=\left|x_{1}\right|^{2}+\cdots+\left|x_{k}\right|^{2}-\left|x_{k+1}\right|^{2}-\cdots-\left|x_{n}\right|^{2}$. We are interested in the second indefinite product. We show that every $A \in \mathcal{O}_{L_{k}}$ has a polar decomposition $A=P U$, where P is positive definite, U is unitary, and both P and U are in $\mathcal{O}_{L_{k}}$. We also show that for every $A \in \mathcal{O}_{L_{k}}$, there exist nonnegative integers r and s, unitary $P, Q \in \mathcal{O}_{L_{k}}$, and positive definite diagonal $D, E \in M_{k-r}(\mathbb{C})$ such that $k-r=n-k-s, D^{2}-E^{2}=I_{k-r}$, and $A=P\left(I_{r} \oplus\left[\begin{array}{ll}D & E \\ E & D\end{array}\right] \oplus I_{s}\right) Q^{*}$.

2 Lorentz Matrices

Let an integer $0 \leq k \leq n$ be given. Let $U_{1} \in M_{k}(\mathbb{C})$ and let $U_{2} \in M_{n-k}(\mathbb{C})$ be both unitary. Then $B \equiv U_{1} \oplus U_{2} \in \mathcal{O}_{L_{k}}$. Conversely, suppose that $C \in \mathcal{O}_{L_{k}}$ is unitary. Then $L_{k} C^{-1} L_{k}=L_{k} C^{*} L_{k}=\Lambda_{L_{k}}(C)=C^{-1}$. Consequently, $L_{k} C=C L_{k}$. Writing
$C=\left[\begin{array}{ll}C_{11} & C_{12} \\ C_{21} & C_{22}\end{array}\right]$, conformal to L_{k}, one checks that $C_{12}=0$ and that $C_{21}=0$. Since C is unitary, both C_{11} and C_{22} are unitary.

Proposition 4. Let $C \in \mathcal{O}_{L_{k}}$ be given. Then C is unitary if and only if there exist unitary $C_{1} \in M_{k}(\mathbb{C})$ and $C_{2} \in M_{n-k}(\mathbb{C})$ such that $C=C_{1} \oplus C_{2}$.

The set of unitary matrices in $\mathcal{O}_{L_{k}}$ is a subgroup of $\mathcal{O}_{L_{k}}$ under multiplication. Our approach is to study normal $\left(A A^{*}=A^{*} A\right)$ matrices in $\mathcal{O}_{L_{k}}$. Normal matrices are unitarily diagonalizable. Moreover, if X and $Y \in M_{n}(\mathbb{C})$ are normal, then X is similar to Y if and only if X is similar to Y with a unitary matrix as a matrix of similarity. Suppose that B and C are in $\mathcal{O}_{L_{k}}$ and are both normal. If B is similar to C, can the matrix of similarity be taken to be a unitary in $\mathcal{O}_{L_{k}}$?

Consider $L_{1}=\operatorname{diag}(1,-1)$. Let $A=L_{1}$ and let $B=-L_{1}$. Then A and B are both $\Lambda_{L_{1}}$ orthogonal. Moreover, A is similar to B. The set of unitary matrices in $\mathcal{O}_{L_{1}}$ is $\left\{\operatorname{diag}\left(e^{i \theta}, e^{i \beta}\right): \theta, \beta \in \mathbb{R}\right\}$. Hence, A and B cannot be similar using a unitary matrix in $\mathcal{O}_{L_{1}}$.

The form of a unitary matrix in $\mathcal{O}_{L_{k}}$ gives rise to the following definitions.
Let $x=\left[x_{i}\right] \in \mathbb{C}^{n}$ be given. Suppose that $0<k<n$. If $x_{1}=\cdots=x_{k}=0$, then we call x a $(0, n-k)$ vector. If $x_{k+1}=\cdots=x_{n}=0$, then we call x a $(k, 0)$ vector. We let \mathbb{A}^{k} be the set of all $(k, 0)$ vectors, and we let \mathbb{B}^{n-k} be the set of all $(0, n-k)$ vectors. Notice that for every $y \in \mathbb{C}^{n}$, we have $y+L_{k} y \in \mathbb{A}^{k}$, while $y-L_{k} y \in \mathbb{B}^{n-k}$. Each of \mathbb{A}^{k} and \mathbb{B}^{n-k} is a subspace of \mathbb{C}^{n}.

Let $A \in M_{n}(\mathbb{C})$ be normal. Then $x \in \mathbb{C}^{n}$ is an eigenvector of A corresponding to λ if and only if x is an eigenvector of A^{*} corresponding to $\bar{\lambda}$. This follows from the fact that A is unitarily diagonalizable. If $x \in \mathbb{C}^{n}$ is an eigenvector of A corresponding to λ, if $y \in \mathbb{C}^{n}$ is an eigenvector of A corresponding to β, and if $\lambda \neq \beta$, then $x^{*} y=0$, that is, x and y are orthogonal. For λ an eigenvalue of A, set $V_{\lambda} \equiv\left\{x \in \mathbb{C}^{n}: A x=\lambda x\right\}$. Notice that V_{λ} is a vector space. Let $\operatorname{dim}\left(V_{\lambda}\right)$ denote the dimension of V_{λ}. If λ and β are distinct eigenvalues of A, then V_{λ} and V_{β} are orthogonal. If $x \in V_{\lambda}$, then $A(A x)=A(\lambda x)=\lambda(A x)$ so that $A x \in V_{\lambda}$. Suppose that $A x \in V_{\lambda}$. If A is singular, then x need not be in V_{λ} - take $z \in V_{\lambda}$, let $0 \neq y$ be such that $A y=0$, and let $x=z+y$ Then $A x=A z \in V_{\lambda}$, however, there is no guarantee that $x \in V_{\lambda}$. If A is nonsingular, however, then $A(A x)=\lambda(A x)$ implies that $A x=\lambda x$ and $x \in V_{\lambda}$. Let $V_{\lambda}^{\perp} \equiv\left\{y \in \mathbb{C}^{n}: y^{*} x=0\right.$ for every $\left.x \in V_{\lambda}\right\}$ be the orthogonal complement of V_{λ} in \mathbb{C}^{n}. Then, $\operatorname{span}\left\{V_{\lambda}, V_{\lambda}^{\perp}\right\}=\mathbb{C}^{n}$, that is, for every $z \in \mathbb{C}^{n}$, there exist $x \in V_{\lambda}$ and $y \in V_{\lambda}^{\perp}$ such that $z=x+y$. Let $y \in V_{\lambda}^{\perp}$ be given. Write $A y=u+v$, with $u \in V_{\lambda}$ and $v \in V_{\lambda}^{\perp}$. Then $0=(\bar{\lambda} u)^{*} y=\left(A^{*} u\right)^{*} y=u^{*} A y=u^{*}(u+v)=u^{*} u$ so that $u=0$. Hence, if $y \in V_{\lambda}^{\perp}$, then $A y \in V_{\lambda}^{\perp}$. Let λ and β be distinct eigenvalues of A. Set $V=\operatorname{span}\left\{V_{\lambda}, V_{\beta}\right\}$, and let V^{\perp} be the orthogonal complement of V in \mathbb{C}^{n}. Let $x \in V$ be given. There exist $y \in V_{\lambda}$ and $z \in V_{\beta}$ such that $x=y+z$. Notice that $A y \in V_{\lambda}$ and that $A z \in V_{\beta}$, hence, $A x \in V$. Consequently, if $x \in V^{\perp}$, then $A x \in V^{\perp}$.

Lemma 5. Let $A \in \mathcal{O}_{L_{k}}$ be normal. Then $x \in \mathbb{C}^{n}$ is an eigenvector of A corresponding to the eigenvalue λ if and only if $L_{k} x$ is an eigenvector of A corresponding to the eigenvalue $\frac{1}{\bar{\lambda}}$.
Proof. Let $x \in \mathbb{C}^{n}$ be an eigenvector of A corresponding to λ. Then $A x=\lambda x$ and we also have $A^{*} x=\bar{\lambda} x$. Hence, $\bar{\lambda} L_{k} x=L_{k} A^{*} x=L_{k} A^{*} L_{k} L_{k} x=A^{-1} L_{k} x$, so that $A L_{k} x=\frac{1}{\lambda} L_{k} x$. The other direction can be shown by setting $y=L_{k} x$ and $\beta=\frac{1}{\lambda}$, and noting that $L_{k} y=x$ and $\frac{1}{\bar{\beta}}=\lambda$.

Let $\mathcal{A}=\left\{x_{1}, \ldots, x_{t}\right\}$ be an orthonormal set. Then $\left(L_{k} x_{p}\right)^{*}\left(L_{k} x_{q}\right)=x_{p}^{*} x_{q}$ for every $p, q=1, \ldots, t$. Hence, $\mathcal{B}=\left\{L_{k} x_{1}, \ldots, L_{k} x_{t}\right\}$ is also an orthonormal set. For $p=1, \ldots, t$, set $y_{p}=x_{p}+L_{k} x_{p}$, set $z_{p}=x_{p}-L_{k} x_{p}$, and set

$$
\begin{equation*}
\mathcal{C}=\left\{y_{1}, \ldots, y_{t}, z_{1}, \ldots, z_{t}\right\} \tag{1}
\end{equation*}
$$

Then $x_{p}=\frac{1}{2}\left(y_{p}+z_{p}\right)$ and $L_{k} x_{p}=\frac{1}{2}\left(y_{p}-z_{p}\right)$ so that $\operatorname{span}(\mathcal{C})=\operatorname{span}(\mathcal{A} \cup \mathcal{B})$. Notice that each $y_{p} \in \mathbb{A}^{k}$, while each $z_{j} \in \mathbb{B}^{n-k}$.

Suppose that $|\lambda|=1$. Then Lemma 5 guarantees that $x \in V_{\lambda}$ if and only if $L_{k} x \in V_{\lambda}$. Moreover, because V_{λ} is a vector space, $x+L_{k} x$ and $x-L_{k} x$ are also in V_{λ}. Let \mathcal{A} be an orthonormal basis of V_{λ} and let \mathcal{C} be as in Eq. (1). Then, $V_{\lambda}=\operatorname{span}(\mathcal{C})$. Let \mathcal{E} be a maximal linearly independent subset of \mathcal{C}. Then \mathcal{E} is a basis of V_{λ}. Write $\mathcal{E}=\mathcal{E}_{1} \cup \mathcal{E}_{2}$, where \mathcal{E}_{1} contains only $(k, 0)$ vectors and \mathcal{E}_{2} contains only $(0, n-k)$ vectors. Let $\mathcal{F}_{1}=\left\{f_{11}, \ldots, f_{1 p}\right\}$ be an orthonormal basis of $\operatorname{span}\left(\mathcal{E}_{1}\right)$ and let $\mathcal{F}_{2}=\left\{f_{21}, \ldots, f_{2 q}\right\}$ be an orthonormal basis of $\operatorname{span}\left(\mathcal{E}_{2}\right)$. Then $\mathcal{F}_{1} \cup \mathcal{F}_{2}$ is an orthonormal basis for V_{λ} consisting only of vectors from $\mathbb{A}^{k} \cup \mathbb{B}^{n-k}$.

Lemma 6. Let $A \in \mathcal{O}_{L_{k}}$ be normal. Let $\lambda_{1}, \ldots, \lambda_{t}$ be the distinct eigenvalues of A with $\left|\lambda_{1}\right|=\cdots=\left|\lambda_{t}\right|=1$. Then, for each $p, q=1$, ..t if $p \neq q$, then $V_{\lambda_{p}}$ and $V_{\lambda_{q}}$ are orthogonal. For each $p=1, \ldots, t, V_{\lambda_{p}}$ has an orthonormal basis consisting only of vectors from $\mathbb{A}^{k} \cup \mathbb{B}^{n-k}$.

Suppose that $|\lambda| \neq 1$, so that $\lambda \neq \frac{1}{\bar{\lambda}} . \quad$ Set $\alpha \equiv \frac{1}{\bar{\lambda}} . \quad$ Then $x \in V_{\lambda}$ if and only if $L_{k} x \in V_{\alpha}$. Moreover, V_{λ} and V_{α} are orthogonal subspaces and $\operatorname{dim}\left(V_{\lambda}\right)=\operatorname{dim}\left(V_{\alpha}\right)$. Let $\mathcal{A}=\left\{x_{1}, \ldots, x_{t}\right\}$ be an orthonormal basis of V_{λ}. Then $\left(L_{k} x_{p}\right)^{*}\left(L_{k} x_{q}\right)=x_{p}^{*} x_{q}$ for every $p, q=1, \ldots, t$. Hence, $\mathcal{B}=\left\{L_{k} x_{1}, \ldots, L_{k} x_{t}\right\}$ is an orthonormal basis for V_{α}. Moreover, $\left\{x_{1}, \ldots, x_{t}, L_{k} x_{1}, \ldots, L_{k} x_{t}\right\}$ is also an orthonormal set and is a basis of $\operatorname{span}(\mathcal{A} \cup \mathcal{B})$. Let \mathcal{C} be as in equation 1 so that $\operatorname{span}(\mathcal{C})=\operatorname{span}(\mathcal{A} \cup \mathcal{B})$. Then \mathcal{C} is also a basis of $\operatorname{span}(\mathcal{A} \cup \mathcal{B})$. Now, each y_{p} is a $(k, 0)$ vector and each z_{q} is a $(0, n-k)$ vector. Hence, we have $t \leq k$ and $t \leq n-k$. Notice that for every $p, q=1, \ldots, t$ we have (1) $y_{p}^{*} z_{q}=0$, (2) if $p \neq q$, then we have $y_{p}^{*} y_{q}=z_{p}^{*} z_{q}=0$, and (3) $y_{p}^{*} y_{p}=z_{p}^{*} z_{p}=2$. For $p=1, \ldots, t$, let $u_{p}=\frac{1}{\sqrt{2}} y_{p}$ and let $v_{p}=\frac{1}{\sqrt{2}} z_{p}$. Then $\left\{u_{1}, \ldots, u_{t}, v_{1}, \ldots, v_{t}\right\}$ is an orthonormal basis of $\operatorname{span}(\mathcal{A} \cup \mathcal{B})$.
Lemma 7. Let $A \in \mathcal{O}_{L_{k}}$ be normal. Let $\lambda_{1}, \ldots, \lambda_{t}$ be the distinct eigenvalues of A with $\left|\lambda_{1}\right| \geq \cdots \geq\left|\lambda_{t}\right|>1$. For each $p=1, \ldots, t$, set $\alpha_{p}=\frac{1}{\lambda_{p}}$. Then, for each $p, q=1, \ldots t$ we have (i) $V_{\lambda_{p}}$ and $V_{\alpha_{q}}$ are orthogonal, (ii) if $p \neq q$, then $V_{\lambda_{p}}$ and $V_{\lambda_{q}}$ are orthogonal, and (iii) if $p \neq q$, then $V_{\alpha_{p}}$ and $V_{\alpha_{q}}$ are orthogonal. For each $p=1, \ldots, m_{p}$, if $\mathcal{A}_{p}=\left\{x_{p 1}, \ldots, x_{p m_{p}}\right\}$ is an orthonormal basis for $V_{\lambda_{p}}$, then $\mathcal{B}_{p}=\left\{L_{k} x_{p 1}, \ldots, L_{k} x_{p m_{p}}\right\}$ is an orthonormal basis for $V_{\alpha_{p}}$. Set $y_{p q}=\frac{1}{\sqrt{2}}\left(x_{p q}+L_{k} x_{p q}\right)$, set $z_{p q}=\frac{1}{\sqrt{2}}\left(x_{p q}-L_{k} x_{p q}\right)$, and set $\mathcal{C}_{p}=\left\{y_{p 1}, \ldots, y_{p m_{p}}, z_{p 1}, \ldots, z_{p m_{p}}\right\}$. Then each $y_{p q} \in \mathbb{A}^{k}$, each $z_{p q} \in \mathbb{B}^{n-k}$, and each \mathcal{C}_{p} is an orthonormal basis of $\operatorname{span}\left(\mathcal{A}_{p} \cup \mathcal{B}_{p}\right)$. Moreover, we have $\sum_{p=1}^{t} \operatorname{dim}\left(V_{\lambda_{p}}\right) \leq k$ and $\sum_{p=1}^{t} \operatorname{dim}\left(V_{\lambda_{p}}\right) \leq n-k$.

For $p=1, \ldots, t$, let y_{p} and z_{p} be as in equation (1), let $u_{p}=\frac{1}{\sqrt{2}} y_{p}$, and let $v_{p}=$ $\frac{1}{\sqrt{2}} z_{p}$ so that $\left\{u_{1}, \ldots, u_{t}, v_{1}, \ldots, v_{t}\right\}$ is an orthonormal basis of $\operatorname{span}(\mathcal{A} \cup \mathcal{B})$. Hence, $A u_{p}=$ $\frac{1}{\sqrt{2}} A\left(x_{p}+L_{k} x_{p}\right)=\frac{1}{\sqrt{2}}\left(\lambda x_{p}+\frac{1}{\lambda} L_{k} x_{p}\right)=\frac{1}{\sqrt{2}}\left(\lambda \frac{1}{2}\left(y_{p}+z_{p}\right)+\frac{1}{\lambda} \frac{1}{2}\left(y_{p}-z_{p}\right)\right)=\frac{1}{2}\left(\lambda+\frac{1}{\bar{\lambda}}\right) u_{p}+$ $\frac{1}{2}\left(\lambda-\frac{1}{\lambda}\right) v_{p}$. Similarly, $A v_{p}=\frac{1}{2}\left(\lambda-\frac{1}{\lambda}\right) u_{p}+\frac{1}{2}\left(\lambda+\frac{1}{\lambda}\right) v_{p}$.

Theorem 8. Let $A \in \mathcal{O}_{L_{k}}$ be normal. Let $\sigma(A)=\left\{\lambda_{1}, \ldots, \lambda_{t}, \frac{1}{\lambda_{1}}, \ldots, \frac{1}{\lambda_{t}}\right\}$ with $\left|\lambda_{1}\right| \geq \cdots \geq$ $\left|\lambda_{t}\right|>1$. For each $p=1, \ldots, t$, if the multiplicity of λ_{p} is s_{p}, then the multiplicity of $\frac{1}{\lambda_{p}}$ is also s_{p}. Moreover, we have $n=2 k=2 \sum_{p=1}^{t} s_{p}$. For $p=1, \ldots, t$, set $\alpha_{p}=\frac{1}{\lambda_{p}}$, set $\beta_{p}=$ $\frac{1}{2}\left(\lambda_{p}+\alpha_{p}\right)$, set $\delta_{p}=\frac{1}{2}\left(\lambda_{p}-\alpha_{p}\right)$, set $D_{p}=\beta_{p} I_{s_{p}}$, set $E_{p}=\delta_{p} I_{s_{p}}$, set $D=D_{1} \oplus \cdots \oplus D_{t}$, and set $E=E_{1} \oplus \cdots \oplus E_{t}$. There exists a unitary $P \in \mathcal{O}_{L_{k}}$ such that $P^{*} A P=\left[\begin{array}{ll}D & E \\ E & D\end{array}\right]$.

Proof. For $p=1, \ldots, t$, set $\alpha_{p}=\frac{1}{\lambda_{p}}$, set $\beta_{p}=\frac{1}{2}\left(\lambda_{p}+\alpha_{p}\right)$, and set $\delta_{p}=\frac{1}{2}\left(\lambda_{p}-\alpha_{p}\right)$. Because $\operatorname{dim}\left(V_{\lambda_{p}}\right)=\operatorname{dim}\left(V_{\alpha_{p}}\right)$, we have $k=n-k$ so that $n=2 k=2 \sum_{p=1}^{t} s_{p}$, as desired.

Let $y_{p q}$ and $z_{p q}$ be as in Lemma 7. Set $Y_{p}=\left[y_{p 1} \cdots y_{p m_{p}}\right]$, set $Z_{q}=\left[z_{q 1} \cdots z_{q m_{q}}\right]$, and set $P=\left[Y_{1} \cdots Y_{t} Z_{1} \cdots Z_{t}\right]$. Set $D_{p}=\operatorname{diag}\left(\beta_{p}, \ldots, \beta_{p}\right) \in M_{m_{p}}(\mathbb{C})$, set $E_{p}=\operatorname{diag}\left(\delta_{p}, \ldots, \delta_{p}\right) \in$ $M_{m_{p}}(\mathbb{C})$, set $D=D_{1} \oplus \cdots \oplus D_{t}$, set $E=E_{1} \oplus \cdots \oplus E_{t}$, and set $M=\left[\begin{array}{cc}D & E \\ E & D\end{array}\right]$. Because each $y_{p q} \in \mathbb{A}^{k}$ and each $z_{p q} \in \mathbb{B}^{k}$, there exist unitary $Q_{1} \in M_{k}(\mathbb{C})$ and $Q_{2} \in M_{n-k}(\mathbb{C})$ such that $P=Q_{1} \oplus Q_{2}$. Thus, P is unitary and $P \in \mathcal{O}_{L_{k}}$. Moreover, one checks that $A P=P M$.

Let $A \in \mathcal{O}_{L_{k}}$ be normal, and that $\sigma(A)=\left\{\lambda_{1}, \ldots, \lambda_{t}, \frac{1}{\overline{\lambda_{1}}}, \ldots, \frac{1}{\overline{\lambda_{t}}}\right\}$ with $\left|\lambda_{1}\right| \geq \cdots \geq$ $\left|\lambda_{t}\right|>1$. For $p=1, \ldots, t$, let $\lambda_{p}, \alpha_{p}, \beta_{p}, \delta_{p}, D_{p}$, and E_{p} be as in Theorem 8. Write $\lambda_{p}=\left|\lambda_{p}\right| e^{i \theta_{p}}$. Then $\alpha_{p}=\frac{1}{\left|\lambda_{p}\right|} e^{i \theta_{p}}, \beta_{p}=\frac{1}{2}\left(\left|\lambda_{p}\right|+\frac{1}{\left|\lambda_{p}\right|}\right) e^{i \theta_{p}}$, and $\delta_{p}=\frac{1}{2}\left(\left|\lambda_{p}\right|-\frac{1}{\left|\lambda_{p}\right|}\right) e^{i \theta_{p}}$. Set $C_{p}=\frac{1}{2}\left(\left|\lambda_{p}\right|+\frac{1}{\left|\lambda_{p}\right|}\right) I_{s_{p}}$, set $W_{p}=e^{i \theta_{p}} I_{s_{p}}$, and set $F_{p}=\frac{1}{2}\left(\left|\lambda_{p}\right|-\frac{1}{\left|\lambda_{p}\right|}\right) I_{s_{p}}$. Let $C=C_{1} \oplus \cdots \oplus C_{t}$, let $W=W_{1} \oplus \cdots \oplus W_{t}$, and let $F=F_{1} \oplus \cdots \oplus F_{t}$. Then $D=C W$ and $E=F W$. Set $U=W \oplus W$. Then U is unitary and $U \in \mathcal{O}_{L_{k}}$. Moreover, $M U^{*}=\left[\begin{array}{ll}C & F \\ F & C\end{array}\right] . \quad$ Let $X=\frac{1}{\sqrt{2}}\left[\begin{array}{cc}I & I \\ -I & I\end{array}\right] \in M_{n}(\mathbb{C}) . \quad$ One checks that X is unitary and that $X M U^{*} X^{*}=(C+F) \oplus(C-F)$. Now, $C+F=\left|\lambda_{1}\right| I_{s_{1}} \oplus \cdots \oplus\left|\lambda_{t}\right| I_{s_{t}}$ and $C-F=\frac{1}{\left|\lambda_{1}\right|} I_{s_{1}} \oplus \cdots \oplus \frac{1}{\left|\lambda_{t}\right|} I_{s_{t}}$, so that $X M U^{*} X^{*}$ is positive definite. If A is positive definite, then we may take each $\theta_{p}=0$, so that $W=I$.
Corollary 9. Let $A \in \mathcal{O}_{L_{k}}$ be normal. Let $\sigma(A)=\left\{\lambda_{1}, \ldots, \lambda_{t}, \frac{1}{\lambda_{1}}, \ldots, \frac{1}{\lambda_{t}}\right\}$ with $\left|\lambda_{1}\right| \geq \cdots \geq$ $\left|\lambda_{t}\right|>1$. For $p=1, \ldots, t$, suppose that λ_{p} has multiplicity s_{p}. Set $\beta_{p}=\frac{1}{2}\left(\left|\lambda_{p}\right|+\frac{1}{\left|\lambda_{p}\right|}\right)$, set $\delta_{p}=\frac{1}{2}\left(\left|\lambda_{p}\right|-\frac{1}{\left|\lambda_{p}\right|}\right)$, set $D_{p}=\beta_{p} I_{s_{p}}$, set $E_{p}=\delta_{p} I_{s_{p}}$, set $D=D_{1} \oplus \cdots \oplus D_{t}$, and set $E=E_{1} \oplus \cdots \oplus E_{t}$. There exist unitary $P, Q \in \mathcal{O}_{L_{k}}$ such that $P^{*} A Q=\left[\begin{array}{cc}D & E \\ E & D\end{array}\right]$. If A is also positive definite, then we may take $Q=P$.

Notice that both D and E are positive definite, and that $D^{2}-E^{2}=I$. Moreover, both D and E are determined by the eigenvalues of A (assuming the eigenvalues do not lie on the unit circle).

Let $A \in \mathcal{O}_{L_{k}}$ be normal. Suppose that the distinct eigenvalues of A that are on the unit circle are $\lambda_{1}, \ldots, \lambda_{t}$. Let $V_{\lambda}=\operatorname{span}\left\{V_{\lambda_{1}}, \ldots, V_{\lambda_{t}}\right\}$. Lemma 6 guarantees that for $p=1, \ldots, t$, each $V_{\lambda_{i}}$ has orthonormal basis in $\mathbb{A}^{k} \cup \mathbb{B}^{n-k}$. Let $\mathcal{A}_{1}=\left\{x_{1}, \ldots, x_{r}\right\}$ be the set of such vectors in \mathbb{A}^{k} and let $\mathcal{B}_{1}=\left\{y_{1}, \ldots, y_{s}\right\}$ be the set of such vectors in \mathbb{B}^{n-k}. Then $j \equiv k-r=n-k-s$.

Extend \mathcal{A}_{1} to a basis of \mathbb{A}^{k}, say $\mathcal{A}_{2}=\left\{x_{1}, \ldots, x_{r}, \ldots, x_{k}\right\}$ and extend \mathcal{B}_{1} to a basis of \mathbb{B}^{n-k}, say $\mathcal{B}_{2}=\left\{z_{1}, \ldots, z_{j}, y_{1} \ldots, y_{s}\right\}$. Notice that $V_{\lambda}^{\perp}=\operatorname{span}\left\{x_{r+1}, \ldots, x_{k}, z_{1}, \ldots, z_{j}\right\}$. If $x \in V_{\lambda}$, then $A x \in V_{\lambda}$. In particular, if $x \in \operatorname{span}\left(\mathcal{A}_{1}\right)$, then $A x \in \operatorname{span}\left(\mathcal{A}_{1}\right)$; and if $x \in \operatorname{span}\left(\mathcal{B}_{1}\right)$, then $A x \in \operatorname{span}\left(\mathcal{B}_{1}\right)$. If $x \in V_{\lambda}^{\perp}$, then $A x \in V_{\lambda}^{\perp}$. If $x \in V_{\lambda}$ and if $y \in V_{\lambda}^{\perp}$, then $x^{*} A y=0=y^{*} A x$. Let $X=\left[x_{1} \cdots x_{k}\right]$, let $Z=\left[z_{1} \cdots z_{j}\right]$, let $Y=\left[y_{1} \cdots y_{s}\right]$, and let $P=\left[\begin{array}{ll}X Z & Z\end{array}\right]$. There exist unitary $Q_{1} \in M_{k}(\mathbb{C})$ and unitary $Q_{2} \in M_{n-k}(\mathbb{C})$ such that $P=Q_{1} \oplus Q_{2}$, so that $P \in \mathcal{O}_{L_{k}}$. For $p=1, \ldots, r$, suppose that $A x_{p}=\lambda_{m_{p}} x_{p}$, and for $q=1, \ldots, s$, suppose that $A y_{q}=\lambda_{t_{q}} y_{q}$. Let $\Sigma_{1}=\operatorname{diag}\left(\lambda_{m_{1}}, \ldots, \lambda_{m_{r}}\right)$ and let $\Sigma_{2}=\operatorname{diag}\left(\lambda_{t_{1}}, \ldots, \lambda_{t_{s}}\right)$. There exists $N \in M_{2 j}(\mathbb{C})$ such that $P^{*} A P=\Sigma_{1} \oplus N \oplus \Sigma_{2}$. Because $A \in \mathcal{O}_{L_{k}}$, we have $N \in \mathcal{O}_{L_{j}}$. Moreover, the eigenvalues of N do not lie on the unit circle (as the eigenvalues of N are the remaining eigenvalues of A). Corollary 9 guarantees that there exist unitary $P_{1}, Q_{1} \in O_{L_{j}}$, positive definite diagonal $D, E \in M_{j}(\mathbb{C})$ such that $D^{2}-E^{2}=I$ and $P_{1}^{*} N Q_{1}=\left[\begin{array}{ll}D & E \\ E & D\end{array}\right]$. Set $P_{2}=\Sigma_{1} \oplus P_{1} \oplus \Sigma_{2}$ and set $Q_{2}=I_{t} \oplus Q_{1} \oplus I_{s}$. Then, P_{2} and Q_{2} are both unitary and both are in $\mathcal{O}_{L_{k}}$. Moreover, $P_{2}^{*} P^{*} A P Q_{2}=I_{t} \oplus P_{1}^{*} N Q_{1} \oplus I_{s}$.

Theorem 10. Let $A \in \mathcal{O}_{L_{k}}$ be normal. There exist nonnegative integers r and s, unitary $P, Q \in \mathcal{O}_{L_{k}}$, positive definite diagonal $D, E \in M_{k-r}(\mathbb{C})$ such that (1) $k-r=n-k-s$, (2) $D^{2}-E^{2}=I_{k-r}$, and (3) $A=P\left(I_{r} \oplus\left[\begin{array}{cc}D & E \\ E & D\end{array}\right] \oplus I_{s}\right) Q^{*}$. If A is also positive definite, then we may take (a) $Q=P$ and (b) take $D-E$ to be positive definite.

Let $B \in \mathcal{O}_{L_{k}}$ be given. Then $B B^{*}$ and $B^{*} B$ are also in $\mathcal{O}_{L_{k}}$. Moreover, both $B B^{*}$ and $B^{*} B$ are positive definite, and $B B^{*}$ is similar to $B^{*} B$. For a normal $A \in \mathcal{O}_{L_{k}}$, notice that the positive definite matrices D and E in Theorem 10 are determined by the eigenvalues of A that are not lying on the unit circle. Once these are determined, the integers r and s are easily determined. Theorem 10 guarantees that there exist unitary $P, Q \in \mathcal{O}_{L_{k}}$ such that $P^{*} B B^{*} P=I_{r} \oplus\left[\begin{array}{ll}D & E \\ E & D\end{array}\right] \oplus I_{s}=Q^{*} B^{*} B Q$. Let $Z=Q P^{*}$. Then $Z \in \mathcal{O}_{L_{k}}$ and is also unitary. Moreover, $B B^{*}=Z^{*} B^{*} B Z$. Set $C=B Z$. Then $C \in \mathcal{O}_{L_{k}}$ and $C^{*} C=Z^{*} B^{*} B Z=B B^{*}=C C^{*}$, so that C is normal, as well. Theorem 10 now shows the following.

Corollary 11. Let $A \in \mathcal{O}_{L_{k}}$ be given. There exist nonnegative integers r and s, unitary $P, Q \in \mathcal{O}_{L_{k}}$, and positive definite diagonal $D, E \in M_{k-r}(\mathbb{C})$ such that $k-r=n-k-s$, $D^{2}-E^{2}=I_{k-r}$, and $A=P\left(I_{r} \oplus\left[\begin{array}{cc}D & E \\ E & D\end{array}\right] \oplus I_{s}\right) Q^{*}$.

Let $A \in \mathcal{O}_{L_{k}}$ be given. Let the integers r and s, the unitary $P, Q \in \mathcal{O}_{L_{k}}$, and positive definite diagonal matrices $D, E \in M_{k-r}(\mathbb{C})$ be as in Corollary 11. Set $X=$ $I_{r} \oplus\left[\begin{array}{ll}D & E \\ E & D\end{array}\right] \oplus I_{s} . \quad$ Set $j=k-r . \quad$ Let $V=\frac{1}{\sqrt{2}}\left[\begin{array}{cc}I & I \\ -I & I\end{array}\right] \in M_{2 j}(\mathbb{C})$. One checks that $K \equiv\left[\begin{array}{cc}D & E \\ E & D\end{array}\right]=V^{*}\left[\begin{array}{cc}D+E & 0 \\ 0 & D-E\end{array}\right] V . \quad$ Write $D+E=\operatorname{diag}\left(a_{1}, \ldots, a_{j}\right)$ and write $D-E=\operatorname{diag}\left(b_{1}, \ldots, b_{j}\right)$. Then for each $p=1, . ., j$, we have $b_{p}=\frac{1}{a_{p}}$. Let $c_{p}=\ln \left(a_{p}\right)$, so that $\ln \left(b_{p}\right)=-c_{p}$. Let $C=\operatorname{diag}\left(c_{1}, \ldots, c_{j}\right)$, and let $G=C \oplus-C$. Then $K=V^{*} e^{G} V=e^{V^{*} G V}$. Now, $V^{*} G V=\left[\begin{array}{cc}0 & C \\ C & 0\end{array}\right]$.

Corollary 12. Let $A \in \mathcal{O}_{L_{k}}$ be given. There exist nonnegative integers r and s, unitary $P, Q \in \mathcal{O}_{L_{k}}$, positive definite diagonal $D \in M_{k-r}(\mathbb{C})$ such that $k-r=n-k-s, F=$ $0_{r} \oplus\left[\begin{array}{cc}0 & D \\ D & 0\end{array}\right] \oplus 0_{s}$, and $A=P e^{F} Q^{*}$.

Notice that in Corollary 11, $A=P X Q^{*}=P X P^{*}\left(P Q^{*}\right)$, that $P X P^{*}$ is positive definite, that $P Q^{*}$ is unitary, and that both $P X P^{*}$ and $P Q^{*}$ are in $\mathcal{O}_{L_{k}}$. This is the polar decomposition of A. We present a different proof. First, notice that if $A \in \mathcal{O}_{L_{k}}$, then $L_{k} A^{*} L_{k}=A^{-1}$. Taking the conjugate, we have $L_{k}(\bar{A})^{*} L_{k}=(\bar{A})^{-1}$ so that $\bar{A} \in \mathcal{O}_{L_{k}}$. Similarly, it can be shown that A^{T} and A^{*} are also in $\mathcal{O}_{L_{k}}$.

Theorem 13. Let $A \in \mathcal{O}_{L_{k}}$ be given. There exist $P, U \in \mathcal{O}_{L_{k}}$ with P positive definite and U unitary such that $A=P U$.

Proof. Let $A \in \mathcal{O}_{L_{k}}$ be given. Then $A^{*} \in \mathcal{O}_{L_{k}}$ and hence, $A A^{*} \in \mathcal{O}_{L_{k}}$. Notice that $A A^{*}$ is positive definite. Let $q(x)$ be a polynomial that interpolates \sqrt{x} in the joint spectrum of $A A^{*}$ and $\left(A A^{*}\right)^{-1}$. Then we may choose $q(x)$ to be a real polynomial. If $q\left(A A^{*}\right)=$ P, then P is positive definite and $q\left(\left(A A^{*}\right)^{-1}\right)=P^{-1}$. Now, $P^{-1}=q\left(\left(A^{*} A\right)^{-1}\right)=$ $q\left(\Lambda_{H}\left(A^{*} A\right)\right)=\Lambda_{H}\left(q\left(A^{*} A\right)\right)=\Lambda_{H}(P)$ and $P \in \mathcal{O}_{L_{k}} . \quad$ Set $U \equiv P^{-1} A$. Then $U \in \mathcal{O}_{L_{k}}$ (as both A and P are), $U^{*} U=P^{-1} A^{*} A P^{-1}=I$, and $A=P U$, as desired.

Let $H \in \mathcal{H}_{n}$ be given, and suppose that there exists a nonsingular $X \in M_{n}(\mathbb{C})$ such that $H=X^{*} L_{k} X$. Let $A \in \mathcal{O}_{H}$ be given. Lemma 3 guarantees that $X A X^{-1} \in \mathcal{O}_{L_{k}}$. Moreover, Lemma 13 ensures that $X A X^{-1}=P U$, with $P, U \in \mathcal{O}_{L_{k}}, P$ is positive definite, and U is unitary. Now, $A=\left(X^{-1} P X\right)\left(X^{-1} U X\right)$, and notice that both $X^{-1} P X$ and $X^{-1} U X$ are in \mathcal{O}_{H}. Notice also that both $X^{-1} P X$ and $X^{-1} U X$ are diagonalizable, with $X^{-1} P X$ having positive eigenvalues and $X^{-1} U X$ having eigenvalues that are on the unit circle. Such a factorization is known as the Iwasawa decomposition [5, Lemma 3.12].

Corollary 14. Let $H \in \mathcal{H}_{n}$ be given, and suppose that there exists a nonsingular $X \in$ $M_{n}(\mathbb{C})$ such that $H=X^{*} L_{k} X$. Then $A \in \mathcal{O}_{H}$ if and only if there exist $W, V \in \mathcal{O}_{H}$ such that both W and V are diagonalizable, W has positive eigenvalues, V has eigenvalues that are on the unit circle, and $A=W V$.

References

[1] L. Autonne, Sur les matrices hyperhermitiennes et sur les matrices unitaires, Annales de L'Université de Lyon Nouvelle Série, Fas. 38, Lyon (1915).
[2] W. Givens, Factorization and signatures of Lorentz matrices, Bul. Amer. Math. Soc., 46 (1940), 81-85.
[3] R. A. Horn and C. R. Johnson, Matrix Analysis, Cambridge University Press, New York (1985).
[4] R. A. Horn and C. R. Johnson, Topics in Matrix Analysis, Cambridge University Press, New York (1991).
[5] K. Iwasawa, On some types of topological groups, Annals of Mathematics Second Series, 50 (3) (1949), 507-558.
[6] V. Mehrmann and H. Xu, Structured Jordan canonical forms for structured matrices that are Hermitian, skew Hermitian, or unitary with respect to indefinite inner products, Electron. J. Linear Algebra, 5 (1999), 67-103.

