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ON THE DIOPHANTINE EQUATION 3x + 5y + 7z = w2

JERICO B. BACANI† AND JULIUS FERGY T. RABAGO‡,∗

Abstract. We exhaust all solutions of the Diophantine equation

3x + 5y + 7z = w2

in non-negative integers using elementary methods.

1. Introduction

One of the many interesting equations that are being studied by number theorists
is the class of Diophantine equations. Diophantine equations are usually polynomial
equations in two or more variables and mathematicians are searching only for integer
solutions. The simplest type of such is the so-called linear Diophantine equation,
which is of the form

(1.1) ax + by = 1,

where x and y are unknowns while a and b are constants. An equation that can not
be transformed into (1.1) is usually referred to as nonlinear diophantine equation.
Pell’s equation is an example, which is of the form x2 − by2 = 1, where b is not a
perfect square integer, and we are searching for the integer values of x and y that
satisfy the equation. Another example is the equation

(1.2) xn + yn = zn,

which has infinitely many integer solutions (x, y, z) if n = 2 but no integer solutions
whenever n > 2. Then there is the class of the so-called exponential Diophantine
equation which is formed when one or more exponents serve as unknowns as well.
An example is the equation

(1.3) ax − by = 1,

where a, b, x, and y are all positive integers greater than 1. In 1844, Charles Catalan
conjectured that the only solution to (1.3) is the 4-tuple (a, b, x, y) = (3, 2, 2, 3) and
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this was finally proven in 2002 by Preda Miháilescu (cf. [6]). In 2007, D. Acu [1]
showed that the Diophantine equation 2x+5y = z2 has exactly two solutions in non-
negative integers. In 2011, A. Suvarnamani, A. Singta, and S. Chotchaisthit [2] used
P. Miháilescu’s theorem (Catalan’s conjecture) to show that the two Diophantine
equations 4x+7y = z2 and 4x+11y = z2 have no solution in non-negative integers.
In [3], S. Chotchaisthit studied the Diophantine equation 4x + py = z2 in non-
negative integers, and in [4], he obtained a complete solution to the Diophantine
equation 2x + 11y = z2 in non-negative integers. In fact, the latter equation has
already been studied by A. D. Nicoară and C. E. Pumnea [7] without the use of
an auxilliary result (Miháilescu’s Theorem). Banyat Sroysang also studied several
exponential Diophantine equations of ax + by = z2 type (cf. [11, 12, 13, 14, 15,
16]). In [16], Sroysang was asking for the set of all solutions (x, y, z, w) for the
Diophantine equation

(1.4) 3x + 5y + 7z = w2

in non-negative integers. As a response, we present in this paper that the only non-
negative integer solutions (x, y, z, w) to (1.4) are (0, 0, 1, 3), (1, 1, 0, 3) and (3, 1, 2, 9).
Related exponential Diophantine equations in the form px±qy±rz = c where p, q, r
are primes, x, y, z are non-negative integers, and c an integer have been studied in
[5] and [10]. Particularly, J. Leitner [5] solved the equation 3a + 5b − 7c = 1 for
non-negative integers a, b, c and the equation y2 = 3a + 2b + 1 for non-negative
integers a, b and integer y. R. Scott and R. Styer [10] studied, among other things,
the Diophantine equation px ± qy ± 2z = 0 for primes p and q and integer c in
positive integers x, y, and z. They used elementary methods to show that, with a
few explicitly listed exceptions, there are at most two solutions (x, y) to |px±qy| = c
and at most two solutions (x, y, z) to px ± qy ± 2z = 0 in positive integers. In the
following section we shall use elementary methods to prove our main result.

2. Main Result

Theorem (0, 0, 1, 3), (1, 1, 0, 3) and (3, 1, 2, 9) are the only solutions (x, y, z, w)
to the exponential Diophantine equation (1.4) in non-negative integers.

The proof considers separate cases where at least one of the three exponents is
zero or where all of them are strictly positive. Throughout the discussion, N and
N0 denote the set of positive and non-negative integers, respectively.

2.1. The case min{x, y, z} = 0. We consider the following cases:

3x + 5y = w2 − 1,(2.1)

3x + 7z = w2 − 1,(2.2)

5y + 7z = w2 − 1.(2.3)

We prove the following lemmas.

LEMMA 1: (1, 1, 3) is the unique solution to equation (2.1) in N0.

Note that by considering only the case when w > 1 is sufficient to study the
problem since the left hand side (LHS) of (1.4) is greater than or equal to three.
So we proceed as follows.



66 JERICO B. BACANI† AND JULIUS FERGY T. RABAGO‡,∗

Proof of Lemma 1. Let x, y, w ∈ N0 with w > 1 and suppose that 3x + 5y = w2− 1
has a solution in N0. First, we let x = 0. So, we have 2+5y = w2 which is impossible
because 2 + 5y ≡ 3 (mod 4) whereas w2 ≡ 0, 1 (mod 4). If y = 0, then we obtain
3x + 2 = w2 which is also impossible since 3x + 2 ≡ 2 (mod 3). This leaves to
consider min{x, y} > 0. Note that 3x ≡ 1 (mod 4) when x is even and 3x ≡ 3 (mod
4) when x is odd. Also, note that 5y ≡ 1 (mod 4) for any y ∈ N0 so, x is odd, i.e.
x = 2r + 1 for some r ∈ N0. Furthermore, since w2 ≡ 0, 1, 4 (mod 8), 32r+1 + 1 ≡ 4
(mod 8) and, 5y ≡ 1 (mod 8) when y is odd and 5y ≡ 5 (mod 8) when y is even,
we conclude that y is odd, i.e. y = 2s + 1 for some s ∈ N0. We also conclude that
w is odd.

Since x and y are odd, we can now express (2.1) as 32r+1 + 52s+1 = w2 − 1.
Writing w as w = 2m + 1 for some m ∈ N, we further express (2.1) as

32r+1 + 52s+1 = 4m2 + 4m = 4m(m + 1).

Dividing this equation by 8, we obtain

(2.4)
32r+1 + 52s+1

8
=

m(m + 1)

2
.

Notice that the LHS of (2.4) is a triangular number. It is easy to see that the
equation is true for r = s = 0, i.e. (31 + 51)/8 = (1)(2)/2 giving us (x, y, w) =
(1, 1, 3) as a solution to (2.1). Now suppose that there is another solution (r′, s′)

such that min{r′, s′} > 0. Hence, w2 ≡ 0, 1, 4, 7 (mod 9), 32r
′+1 + 1 ≡ 1 (mod 9),

and 52s
′+1 ≡ 1, 4, 7 (mod 9). It follows that 32r

′+1 + 52s
′+1 + 1 ≡ 2, 5, 8 6≡ w2 (mod

9). Thus, (r, s, w) = (0, 0, 3) is the only solution to 32r+1 + 52s+1 = w2− 1 and this
completes the proof of the lemma.

�

Note: In equation (2.4), the triangular number is 8 times a perfect square plus
1. So (2.4) has the form 1 +pα1 + · · ·+pαk = A2 where p is prime and A, a1, . . . , ak
are positive integers. This equation has already been studied by Rotkiewicz and
Z lotkowski in 1987 (cf. [9]). Also, Scott and Styer already proved that the equation
32r+1 + 52s+1 = 8× c, where c is a triangular number, has at most 2 solutions (cf.
Theorem 7 of [10]).

LEMMA 2: (0, 1, 3) is the unique solution to equation (2.2) in N0.

Proof of Lemma 2. Consider equation (2.2) modulo 4. Observe that w2 − 1 ≡ 0, 3
(mod 4) and 7z ≡ 1 (mod 4) if z is even and 7z ≡ 3 (mod 4) if z is odd. Hence, x
and z in (2.2) are of different parity. Suppose x is odd and z is even. Then, 3x ≡ 0
(mod 3) and 7z ≡ 1 (mod 3). It follows that 3x + 7z + 1 ≡ 2 6≡ w2 (mod 3) because
w2 ≡ 0, 1 (mod 3). Thus, the equation (2.2) has no solution. Suppose now that
x = 2r and z = 2t + 1 for some r, t ∈ N0. We can express (2.2) as

(2.5) 8(72t − 72t−1 + · · ·+ 1) = (w + 3r)(w − 3r).

For t = 0 we can distribute the factor 8 as 8 = (w + 3r)(w − 3r) with either
w + 3r = 8, w − 3r = 1 or w + 3r = 4, w − 3r = 2 (but not w + 3r = 2 and
w − 3r = 4, etc because w + 3r > w − 3r). If w + 3r = 8 and w − 3r = 1, then
by addition, 2w = 9 which is clearly impossible. If w + 3r = 4 and w − 3r = 2,
then w = 3, r = 0 and here we obtain (x, y, z, w) = (0, 0, 1, 3) which is a solution to
(1.4). Now to deal with the two conditions; namely,
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i) t > 0, 2|(w + 3r), and 4|(w − 3r), and
ii) t > 0, 4|(w + 3r), and 2|(w − 3r),

it suffices to assume that r > 0. We treat these two cases at once. Note that for
r > 0, 32r ≡ 0 (mod 3) and 7z ≡ 1 (mod 3). Hence, we see that 3x+7z+1 ≡ 2 6≡ w2

since w2 ≡ 0, 1 (mod 3). The conclusion follows. �

LEMMA 3: (0, 1, 3) is the unique solution to equation (2.3) in N0.

Proof of Lemma 3. Consider now equation (2.3) modulo 4. Noting that w is odd
we have w2 − 1 ≡ 0, 3 (mod 4) which implies that z is odd. Since w2 ≡ 1 (mod 8),
72t+1 + 1 ≡ 7 + 1 ≡ 0 (mod 8), and 5y ≡ 1 (mod 8) when y is even and 5y ≡ 5
(mod 8) when y is odd, we conclude that y is even.

If y = 2s and z = 2t+1 for some s, t ∈ N0, then we obtain 8(72t−72t−1+· · ·+1) =
(w + 5s)(w− 5s). Note that w + 5s > w− 5s. So for t = 0, we can only distribute 8
as factors of (w + 5s)(w − 5s) as follows: w + 5s = 8 and w − 5s = 1 or w + 5s = 4
and w− 5s = 2. The first pair of equations is clearly impossible since, by addition,
2w = 9. However, the second pair of equations gives us 2w = (w+5s)+(w−5s) = 6,
or equivalently, w = 3. Here we obtain (x, y, z, w) = (0, 0, 1, 3) as a solution to (1.4)
and so it follows that (0, 1, 3) is a solution to (2.3).

For t > 0, we consider the following cases:

i) 4|(w + 5s) and 2|(w − 5s); and
ii) 2|(w + 5s) and 4|(w − 5s).

We treat these cases at once and we may assume (WLOG) that s > 0.
For min{s, t} > 0 we have,

(52s − 1) + (72t + 1) = w2 − 1 ⇔ 8

[
(52s − 1) + (72t + 1)

8

]
= (w + 1)(w − 1).

Since w is odd then w + 1 and w − 1 were both even then the LHS of the latter
equation is 8 times an odd integer. Hence, if 4|(w± 1) and 2|(w∓ 1) then w± 1 =
4(2k + 1) and w∓ 1 = 2(2l + 1) for some k, l ∈ N. Subtracting these two equations
yields 2 = 2[2(2k + 1) − (2l + 1)] or equivalently, 1 = 2(2k + 1) − (2l + 1) which
implies that k = l = 0. This contradicts our assumption that k, l ∈ N. Thus,
52s+72s+1 = w2−1 has no solution for min{s, t} > 0 which completes the proof. �

2.2. The case min{x, y, z} > 0. Let min{x, y, z} > 0. We first determine a possi-
ble parity of x, y, z so that equation (1.4) has a solution in positive integers. Taking
modulo 4 of both sides of (1.4) we see that x and z must be of different parity and
w is odd. If we take modulo 3 of (1.4) both sides, then y must be odd. Lastly,
taking modulo 8 of (1.4) both sides we conclude that x is odd and z is even. Hence,
(1.4) is only possible in positive integers provided x is odd, y is odd, z is even, and
w is odd.

Let w = 2m + 1 where m ∈ N. Suppose that

(2.6) 32r+1 + 52s+1 + 72t = w2,

for some r, s, t ∈ N0. Since w2 ≡ 0 (mod 3) and w2 ≡ 1 (mod 8) then w = 24n− 15
for some n ∈ N. The least possible value of w would be 9. Letting w = 9 we see
that 32r+1 + 52s+1 = 92 − 72t = (9 + 7t)(9 − 7t) in which follows that t = 0 or
z = 2. Now we have 32r+1 + 52s+1 = 32. Since min{r, s} > 0 and, 2r + 1 ≤ 3 and
2s+ 1 ≤ 2 it follows that r = 1 and s = 0 giving us (1, 0, 1, 9) as a solution to (2.6)
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or equivalently, (3, 1, 2, 9) as a solution to (1.4). Now suppose that there is another
solution to (2.6) with s > 0 then we can express (2.6) as

(2.7) 4[(32r − 32r−1 + · · ·+ 1) + (52s + 52s−1 + · · ·+ 1)] = (w + 7t)(w − 7t).

Note that the term inside [ · ] is even and w + 7t and w − 7t were both even.
In addition, w = 8B + 1 and 7t = (8 − 1)t = 8A ± 1 for some A,B ∈ N. So
w2 − 72t = (8B + 1 + 8A ± 1)(8B + 1 − (8A ± 1)) = 16(A + B)(4(B − A) + 1).
Since A + B is even then the LHS of (2.7) is 32 times an odd integer. Hence, we
can rewrite equation (2.7) as

(2.8) 32

[
(32r − 32r−1 + · · ·+ 1) + (52s + 52s−1 + · · ·+ 1)

8

]
= (w + 7t)(w − 7t).

Now we consider the following possibilities: (i) (32r−32r−1+· · ·+1)+(52s+52s−1+
· · · + 1) = 8 where 16|(w + 7s) or 16|(w − 7s); and (ii) 8|(w + 7t) and 4|(w − 7t)
or 8|(w − 7t) and 4|(w + 7t), which are the ways of distributing the factor 16 of
the LHS across the two factors of the RHS. If 16|(w + 7t) or 16|(w − 7t), then we
have (32r − 32r−1 + · · ·+ 1) + (52s + 52s−1 + · · ·+ 1) = 8 which is impossible since
s > 0. If 8|(w ± 7t) and 4|(w ∓ 7t), then the requirements of w ± 7t being both
odd mean 2m + 1 + 7t = 8(2k + 1) and 2m + 1− 7t = 4(2l + 1) for some k, l ∈ N.
Subtracting these two equations yields 2 ·7t = 4(2(2k+1)−(2l+1)) or equivalently
7t = 2(2(2k+1)− (2l+1)) which is clearly impossible. Therefore the only solutions
in N0 to the exponential Diophantine equation (1.4) are (0, 0, 1, 3), (1, 1, 0, 3) and
(3, 1, 2, 9).
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