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Abstract

In this study, a system of delay differential equations arising from
a three-species model with two predators feeding on a single prey is
considered. It is assumed that the prey population grows logistically
in the absence of predators, and both predator populations adapt a
Holling type II functional response. Each response term includes a delay
time, which reflects the gestation period of each predator. The predator
equations are the same except for their delay time. The positive steady-
state solution of the form (x̄, ȳ, ȳ) is called the symmetric equilibrium.
This work examines the effects of the difference in the gestation period
of the two predators. Conditions for the stability and bifurcations of
the symmetric equilibrium for both cases when the delay times are equal
and when one is larger than the other are provided.
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1 Introduction

Predator-prey system with delay was first introduced by Volterra in 1925, and
since then, it has been the topic of numerous research papers (see for example
the survey by S. Ruan in [4] and references therein). In this paper, we consider
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the following system of delay differential equations arising from a three-species
model with two predators feeding on a single prey:

ẋ(t) = rx(t)

(
1 − x(t)

K

)
− x(t)y(t)

b+ x(t)
− x(t)z(t)

b+ x(t)
,

ẏ(t) = y(t)

[
−d +

x(t− τ1)

b+ x(t− τ1)

]
, (1)

ż(t) = z(t)

[
−d+

x(t− τ2)

b+ x(t− τ2)

]
,

where r,K, b, d, τ1, τ2 > 0, and x(t), y(t), and z(t) represent the populations
of a local prey, an alien predator, and a local predator, respectively, with
initial condition (x(t), y(t), z(t)) = (x0, y0, z0) for t ∈ [−τm, 0] where τm =
max(τ1, τ2) and x0, y0, z0 > 0. In the absence of predators, the prey population
follows a logistic growth with intrinsic growth rate r and carrying capacity K.
Functional response on both predator populations are of Holling type II [2] with
time delay reflecting the gestation period of each predator. For mammals, the
gestation period is the time between conception and birth. The parameter b
represents the half-saturation constant in which the per capita predation rate
is half when x = b. In the absence of prey, both predator populations decay
with the same rate −d.

Our goal is to examine the effects of the difference in gestation periods in
(1). This is the rationale why we consider the same predator equations except
for their delay time. We assume τ1 ≥ τ2. This paper is organized as follows:
Sections 2 and 3 discuss the symmetric case (τ1 = τ2) and the case with multiple
delays (τ1 > τ2), respectively. Main results are given as theorems. Numerical
simulations and discussions of the two cases are presented in Section 4, and
the last section summarizes the thoughts in this work.

2 Symmetric Three-Species Model

When τ1 = τ = τ2, interchanging the predator variables y(t) and z(t) in (1)
leaves it unchanged. We call this the symmetric case and is given by

ẋ(t) = rx(t)

(
1 − x(t)

K

)
− x(t)y(t)

b+ x(t)
− x(t)z(t)

b+ x(t)
,

ẏ(t) = y(t)

[
−d +

x(t− τ)

b+ x(t− τ)

]
, (2)

ż(t) = z(t)

[
−d+

x(t− τ)

b+ x(t− τ)

]
.
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We may reduce (2) into just two equations by letting u(t) = y(t) + z(t).
However, we keep (2) as it is to understand some subtleties that symmetry
induces.

Each of systems (1) and (2) has 3 equilibrium solutions given by (0, 0, 0),
(K, 0, 0), and

(x̃, ỹ, z̃) = (C,D − s, s) , (3)

where

C =
bd

1 − d
, D =

rb(K − dK − bd)

K(1 − d)2
, and 0 ≤ s ≤ D.

If s = 0 then (x̃, ỹ, z̃) = (C,D, 0), and if s = D then (x̃, ỹ, z̃) = (C, 0, D). The
positive equilibrium, then, is given by (x̄, ȳ, z̄) = (C,D − s, s) with 0 < s < D.
We call the positive equilibrium of the form

(x̄, ȳ, ȳ) = (C,D/2, D/2) (4)

as the symmetric equilibrium, and it exists provided

1 − d > 0 and K − dK − bd > 0. (5)

The stability and bifurcations of the equilibria (C,D, 0) and (C, 0, D) are the
same as that of (x̄, ȳ, ȳ). Therefore, in the following, we focus only on the
equilibria (0, 0, 0), (K, 0, 0), and (x̄, ȳ, ȳ).

Let X(t) = [x(t), y(t), z(t)]T . The linearized system corresponding to (2)
about an equilibrium solution (x∗, y∗, z∗) is given by

Ẋ(t) = M0X(t) +M1X(t− τ)

where

M0 =

⎡
⎢⎢⎢⎢⎢⎣

r

(
1 − 2

K
x∗

)
− b(y∗ + z∗)

(b+ x∗)2
− x∗

b+ x∗
− x∗

b+ x∗

0 −d+
x∗

b+ x∗
0

0 0 −d +
x∗

b+ x∗

⎤
⎥⎥⎥⎥⎥⎦
,

M1 =

⎡
⎢⎢⎢⎢⎣

0 0 0
by∗

(b+ x∗)2
0 0

bz∗

(b+ x∗)2
0 0

⎤
⎥⎥⎥⎥⎦ ,
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and the corresponding characteristic equation is

det Δ(λ) = |λI − (M0 + e−λτM1)| = 0. (6)

For (x∗, y∗, z∗) = (0, 0, 0), the matrix M0 +e−λτM1 = M0 has eigenvalues r > 0
and −d < 0, and therefore the equilibrium point (0, 0, 0) is a saddle point. For
(x∗, y∗, z∗) = (K, 0, 0), the matrix M0 + e−λτM1 = M0 has eigenvalues −r < 0
and (K−dK−bd)/(b+K). Thus, if K−dK−bd < 0 then (K, 0, 0) is a stable
node. If K − dK − bd > 0 then (K, 0, 0) becomes unstable, and an additional
equilibrium point (3) starts to appear. For (x∗, y∗, z∗) = (x̄, ȳ, ȳ), we have

M0 + e−λτM1 =

⎡
⎣ A −d −d

(B/2)e−λτ 0 0
(B/2)e−λτ 0 0

⎤
⎦

where

A =
rd(K − dK − bd− b)

K(1 − d)
and B =

r(K − dK − bd)

K
. (7)

The characteristic equation (6) becomes λ3 − Aλ2 +Bdλe−λτ = 0 or

λ(λ−A) +Bde−λτ = 0. (8)

From (5), the existence of the symmetric equilibrium (4) requires

B > 0. (9)

An equilibrium solution is asymptotically stable if all roots of its correspond-
ing characteristic equation have negative real parts [6]. We first discuss the
bifurcations of the symmetric equilibrium (4) of system (2) as this is closely
tied with our stability results.

System (2) undergoes a steady-state bifurcation when λ = 0 is a root of
(8). Notice that if λ = 0, then (8) yields B = 0. By (9), this is not possible
and therefore λ = 0 is not a root of the characteristic equation (8). Meanwhile,
Hopf bifurcation occurs when λ = iω, with ω > 0, is a root of (8). In this case,
the characteristic equation in (8) becomes −ω2− iAω+Bde−iωτ = 0. Splitting
into real and imaginary parts, we obtain

−ω2 +Bd cosωτ = 0, and −Aω −Bd sinωτ = 0. (10)

Consequently, from equations in (10), we get

cotωτ =
ω

−A. (11)
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If A < 0, then (11) has positive roots ωn ∈ ((n− 1)π/τ, (2n− 1)π/2τ) , for
n = 1, 2, . . . . For each ωn, we define

Bn =
ω2

n

d cosωnτ
. (12)

The above discussion implies that system (2) undergoes a Hopf bifurcation at
the symmetric equilibrium (4) when B = Bn (for n = 1, 2, . . . ).

The following lemmas are needed in the proof of our first result.

Lemma 2.1. Let λ(B) = α(B) + iω(B) denote the root of (8) with A < 0
satisfying α(Bn) = 0 and ω(Bn) = ωn. Then, sign α′(Bn) = sign Bn.

Proof. From (8), we get 2λ dλ
dB

−A dλ
dB

+de−λτ−Bdτe−λτ dλ
dB

= 0. Consequently,

dλ

dB
=

−de−λτ

2λ− A− Bdτe−λτ
=

(λ2 − Aλ) /B

2λ−A−Bdτe−λτ

using (8). At B = Bn, that is, at λ(Bn) = iωn, we have

dλ(Bn)

dB
=

(−ω2
n − iAωn) /Bn

i2ωn −A−Bndτe−iωnτ
=

(−ω2
n − iAωn) /Bn

(−A− Bndτ cosωnτ) + i(2ωn +Bndτ sinωnτ)
.

So that, for Δ = [−A−Bndτ cosωnτ ]
2 + [2ωn +Bndτ sinωnτ ]

2 > 0, we have

α′(Bn) = Re

(
dλ(Bn)

dB

)

=
1

Δ

[
−ω2

n

Bn
(−A− Bndτ cosωnτ) − Aωn

Bn
(2ωn +Bndτ sinωnτ)

]

=
Bnd

2

Δ

[
−A

(
ω2

n

B2
nd

2

)
+ τ

(
ω2

n

Bnd
cosωnτ − Aωn

Bnd
sinωnτ

)]

=
Bnd

2

Δ

[
−A

(
ω2

n

B2
nd

2

)
+ τ

]

using (10). Therefore, since −A, τ > 0, we obtain that the sign of α′(Bn) is
the same as that of Bn. �

The proof of the next lemma uses Corollary 2.4 of [5] which states that as the
delay parameters vary, the sum of the orders of the roots of the characteristic
equation in the open right half-plane can change only if a zero appears on or
crosses the imaginary axis.

Lemma 2.2. All roots of the characteristic equation (8) with A < 0 have
negative real parts if and only if B ∈ (0, B1), where B1 is given in (12) and
corresponds to positive root ω1 of (11) on the interval (0, π/2τ).
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Proof. Suppose A < 0 and B ∈ (0, B1). Recall that λ = 0 is a root of (8)
if and only if B = 0, and λ = iω, with ω > 0, is a root of (8) if and only if
B = Bn for n ∈ Z

+. Hence, by Corollary 2.4 of [5], the sum of the orders of
the roots of (8) in the open right half-plane does not change when B ∈ (0, B1).
By Lemma 2.1, α(B1) = 0 and sign α′(B1) = sign B1 > 0. This means that
α(B) < 0 whenever B ∈ (0, B1). Therefore, all roots of (8) have negative
real parts when B ∈ (0, B1). Now, if B > B1, then Lemma 2.1 implies that
(8) has at least one root with positive real part. Therefore, all roots of the
characteristic equation (8) have negative real parts if and only if B ∈ (0, B1).
�

We now state our first stability result. The proof follows from Lemma 2.2
and the Hopf Bifurcation Theorem [6].

Theorem 2.3. Let Bn be defined by (12) and suppose that A < 0. The
symmetric equilibrium (4) of system (2) is asymptotically stable if and only
if B ∈ (0, B1). When B = Bn (n = 1, 2, . . . ), then (2) undergoes a Hopf
bifurcation at the symmetric equilibrium (4).

3 Three-Species Model with Two Delays

Consider now system (1) with τ1 > τ2. To study the stability and bifurcations
of the symmetric equilibrium (4) of (1), we follow the same technique as in the
previous symmetric case. Linearizing (1) about the symmetric equilibrium (4)
yields the corresponding characteristic equation

λ(λ− A) +
1

2
Bd

(
e−λτ1 + e−λτ2

)
= 0. (13)

By (9), we see that λ = 0 is not a root of (13), for if λ = 0 then (13) gives
B = 0. Now, if λ = iω, with ω > 0, then (13) becomes

−ω2 − iAω +
1

2
Bd

(
e−iωτ1 + e−iωτ2

)
= 0.

Separating into real and imaginary parts, we obtain

Bd
cosωτ1 + cosωτ2

2
= ω2, and Bd

sinωτ1 + sinωτ2
2

= −Aω, (14)

or equivalently,

Bd · cos

(
τ1 + τ2

2
ω

)
cos

(
τ1 − τ2

2
ω

)
= ω2,

Bd · sin
(
τ1 + τ2

2
ω

)
cos

(
τ1 − τ2

2
ω

)
= −Aω.

(15)
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From equations in (15), we get

cot

(
τ1 + τ2

2
ω

)
=

ω

−A. (16)

If A < 0, then (16) has positive roots ωn ∈
(

(2n−2)π
τ1+τ2

, (2n−1)π
τ1+τ2

)
, for n = 1, 2, . . . .

For each ωn, we define

βn =
ω2

n

d cos
(

τ1+τ2
2

ωn

)
cos

(
τ1−τ2

2
ωn

) . (17)

The above discussion implies that system (1) undergoes a Hopf bifurcation at
the symmetric equilibrium (4) when B = βn (n = 1, 2, . . . ).

The following lemmas are needed in the proof of our second and final result.
These are generalization of Lemmas 2.1 and 2.2 to the case when τ1 > τ2.

Lemma 3.1. Let λ(B) = α(B) + iω(B) denote the root of (13) with A < 0
satisfying α(βn) = 0 and ω(βn) = ωn. Then, sign α′(βn) = sign βn.

Proof. From (13), we get

2λ
dλ

dB
− A

dλ

dB
+

1

2
d

(
e−λτ1 + e−λτ2

)
+

1

2
Bd

(−τ1e−λτ1 − τ2e
−λτ2

) dλ
dB

= 0.

Consequently,

dλ

dB
=

−1
2
d

(
e−λτ1 + e−λτ2

)
2λ− A− 1

2
Bd (τ1e−λτ1 + τ2e−λτ2)

=
(λ2 − Aλ) /B

2λ−A− 1
2
Bd (τ1e−λτ1 + τ2e−λτ2)

using (13). For ease of notation, we let

φ(ω) = cosωτ1 + cosωτ2 and ψ(ω) = sinωτ1 + sinωτ2. (18)

Thus,

−φ′(ω) = τ1 sinωτ1 + τ2 sinωτ2,
ψ′(ω) = τ1 cosωτ1 + τ2 cosωτ2.

(19)

At B = βn, that is, at λ(βn) = iωn, we have

dλ(βn)

dB
=

(−ω2
n − iAωn) /βn

i2ωn −A− 1
2
βnd (τ1e−iωnτ1 + τ2e−iωnτ2)

=
(−ω2

n − iAωn) /βn[−A− 1
2
βndψ′(ωn)

]
+ i

[
2ωn − 1

2
βndφ′(ωn)

]
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using (19). Thus, for Δ =
[−A− 1

2
βndψ

′(ωn)
]2

+
[
2ωn − 1

2
βndφ

′(ωn)
]2
> 0,

α′(βn) = Re

(
dλ(βn)

dB

)

=
1

Δ

[
−ω

2
n

βn

(
−A− 1

2
βndψ

′(ωn)

)
− Aωn

βn

(
2ωn − 1

2
βndφ

′(ωn)

)]

=
βnd

2

4Δ

[
−A

(
4ω2

n

β2
nd

2

)
+

2ω2
n

βnd
ψ′(ωn) +

2Aωn

βnd
φ′(ωn)

]

=
βnd

2

4Δ

[
−A

(
4ω2

n

β2
nd

2

)
+ φ(ωn)ψ′(ωn) − ψ(ωn)φ′(ωn)

]

using (14) and (18). By (18), φ(ω)/ψ(ω) = cot
(

τ1+τ2
2

ω
)
, and since

d

dω

(
φ(ω)

ψ(ω)

)
=
ψ(ω)φ′(ω) − φ(ω)ψ′(ω)

ψ2(ω)
and

d

dω
cot

(
τ1 + τ2

2
ω

)
< 0,

we have φ(ω)ψ′(ω)−ψ(ω)φ′(ω) > 0. The required result then follows from the
fact that −A > 0 and φ(ω)ψ′(ω) − ψ(ω)φ′(ω) > 0. �

The proof of the next lemma is similar to the proof of Lemma 2.2.

Lemma 3.2. All roots of the characteristic equation (13) with A < 0 have
negative real parts if and only if B ∈ (0, β1), where β1 is given in (17) and
corresponds to ω1 which is the root of (16) on the interval (0, π/ (τ1 + τ2)).

We now state our final result whose proof follows from Lemma 3.2 and the
Hopf Bifurcation Theorem [6].

Theorem 3.3. Let βn be defined by (17) and suppose that A < 0. The
symmetric equilibrium (4) of system (1) is asymptotically stable if and only
if B ∈ (0, β1). When B = βn (n = 1, 2, . . . ), then (1) undergoes a Hopf
bifurcation at the symmetric equilibrium (4).

4 Numerical Simulations

Using DDE-Biftool, which is a numerical continuation and bifurcation analysis
tool developed by Engelborghs et al [1], we now examine the dynamics of
systems (1) and (2). In the following examples, we use the initial condition
(x(t), y(t), z(t)) = (24, 18, 18) for t ∈ [−τm, 0] where τm = max(τ1, τ2).

Example 1. System (2) with (r,K, b, d) = (1, 40, 20, 0.5) has the symmetric
equilibrium (x̄, ȳ, ȳ) = (20, 10, 10), and gives A = −0.25 and B = 0.25 using
(7). For τ = 1.4, we get B1 = 0.376460 from (12). Hence, by Theorem 2.3,
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Figure 1: Stability switching and emergence of periodic solutions at a Hopf
bifurcation (∗) for both cases when τ1 = τ = τ2 (Left) and τ1 > τ2 (Right).

(x̄, ȳ, ȳ) is asymptotically stable. We then use DDE-Biftool to continue this
stable equilibrium solution into a branch of equilibria by varying the delay time
τ . Figure 1a shows this branch as the horizontal line where green (solid lines)
and magenta (dash lines) represent the stable and unstable parts of the branch,
respectively. A change of stability occurs at a Hopf bifurcation point marked
with (∗) where τ = τc = 2.160299. Again, we use DDE-Biftool to continue this
Hopf point into a branch of periodic solutions by varying τ . We obtain a stable
(solid line) branch of periodic solutions emanating from this Hopf bifurcation
point, where the vertical axis gives a measure of the amplitude of the oscillation
in the predator populations y(t) and z(t). In this case, the bifurcating branches
of periodic solutions corresponding to the predators overlap. Note that τc can
also be recovered by solving for ω = ωc > 0 in ω4 + A2ω2 − B2d2 = 0, which
is obtained using (10), and then using this ωc value to get τc from (10).

Example 2. Now, consider (1) with (r,K, b, d, τ1, τ2) = (1, 40, 20, 0.5, 1.4, 1.4).
Since τ1 = τ2, we know from Example 1 that (x̄, ȳ, ȳ) is asymptotically stable.
We then use DDE-Biftool to continue this stable equilibrium into a branch
of equilibria by varying τ1. Figure 1b shows this branch as the horizontal
line, where a change of stability occurs at a Hopf bifurcation point (∗) where
τ = τ1c = 3.077528. The value τ1c can also be obtained by fixing τ2 = 1.4,
and then increasing τ1 until the condition B = β1 in Theorem 3.3 is achieved.
Continuing this Hopf bifurcation point into a branch of periodic solutions in
DDE-Biftool by varying τ1, we obtain a stable bifurcating branch of periodic
solutions. Figure 1b shows branches of periodic solutions for predator popu-
lations y(t) and z(t) on the same plane. Observe that beyond τ1c, the alien
predator population y(t) with longer gestation period τ1 oscillates higher than
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the local predator population z(t) with shorter gestation period τ2. In mam-
mals, specifically elephants [3], the gestation period has a strong relation to
neonate brain size. This brain and cognitive capacity then enhances compe-
tency and therefore it gives advantage to animals with longer gestation period.

5 Conclusions

The effects of the difference in gestation period of the predators in a three-
species model (1) are examined. When τ1 = τ2, the symmetric equilibrium
(x̄, ȳ, ȳ) is asymptotically stable up to some critical delay value τ = τc where
Hopf bifurcations occurs and a stable periodic orbit emerges. The same can
be said for the case when τ1 > τ2, by fixing τ2 and then increasing τ1. Stability
switching occurs at the critical delay value τ1 = τ1c. Furthermore, numerical
simulations show that beyond this τ1c, the predator with longer gestation pe-
riod oscillates higher than the predator with shorter gestation period.

Acknowledgements. The author acknowledges the support of the Uni-
versity of the Philippines.
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