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Abstract. Coupled oscillators are the subject of different studies because they display
interesting behavior, such as synchrony. In this paper, we investigate the dynamics of a system
of two delay-coupled oscillators and show that they display some kind of synchrony. We use the
Stuart-Landau equations to represent this system, which is linked via conjugate coupling. These
equations form a system of delay differential equations, which we have found to have symmetry
isomorphic to Z2×Z2. We looked into the form of steady-states that inherit part of the symmetry
of this system and the birth of periodic solutions with symmetry. In particular, we found
bifurcating steady-state and periodic solutions with symmetry isomorphic to Z2 emanating
from the branch of trivial solutions. As an illustration, we performed numerical continuation
to generate a bifurcating branch of symmetric solutions from the branch of trivial solutions.
These symmetric solutions provide us with the type of synchrony that can be displayed by the
oscillators. Finally, we determined the stability of the different branches of symmetric solutions
numerically.

1. Introduction
Oscillations are in abundance in nature as well as in manufactured systems and devices. They
have been the theme of a good deal of theoretical and experimental studies. Among them are
the study of synchrony in coupled oscillators. Research on synchrony traces its origin during the
17th century when a Dutch scientist, Christiaan Huygens, disclosed the synchronization of two
pendulum clocks in an experimental set-up [1]. From then on, researches on the emergence of
synchrony in coupled systems and the cause of which have been active. Recent studies find the
conditions for synchrony in coupled oscillators [2, 3, 4] and discover the appearance of synchrony
through different types of coupling [5, 6]. More generally, oscillators that are coupled give venue
for observation of collective phenomenon, such as synchronization, in physical and biological
systems [7]. Most oscillators can be represented by a universal mathematical model. One of
the universal models for oscillators is given by a system of Stuart-Landau (SL) equations. In
his paper [8], Verma considered a system of oscillators in a face to face configuration modeled
by SL equations with conjugate coupling. In this paper, we modify his model with the addition
of a fixed delay on the coupling time. An introduction to delay equations can be found in [4],
which is a paper involving a similar face to face configuration of two delay-coupled lasers.

Our main objective in this paper is to classify the symmetric solutions to the system of
two oscillators coupled via conjugate coupling. We want to describe the type of synchrony
between the oscillators in steady-state and periodic solutions. We show mathematically that



the synchrony of the oscillators is naturally inherited from the symmetry of the equations that
describe the two-oscillator system. The mathematical tools used in this paper are group theoretic
methods that are found in the books given in [9, 10, 11].

2. Two-Oscillator System with Conjugate Coupling
In this section, we study the symmetric system of two delay-coupled oscillators with conjugate
coupling using Stuart-Landau (SL) equations. This system can be represented by the SL
equations given below,

ẋ1 = (1− x21 − y21)x1 − ωy1 + ε(y2(t− τ)− x1)
ẏ1 = (1− x21 − y21)y1 + ωx1
ẋ2 = (1− x22 − y22)x2 − ωy2 + ε(y1(t− τ)− x2)
ẏ2 = (1− x22 − y22)y2 + ωx2

, (1)

where τ is the delay in the coupling. The addition of a delay in the coupling is a modification to
the system presented by Verma [8]. In his paper, he was able to compute for three forms
of steady-state solutions: the trivial solution and two nontrivial solutions having the form
(x, y,−x,−y) and (x, y, x, y). In the following, we will also compute for steady-state solutions
of (1) but through a group theoretic approach.

2.1. Symmetry Group and Isotropy Subgroups
We claim that system (1) has symmetry isomorphic to Z2×Z2. To show this, we note that that
a homomorphism ρ : Z2 = 〈γ〉 −→ GL(4,R) defined by

e→ I, γ →


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

 ,
is a representation of Z2 on R4. Here, we see that the action of γ on [x1, y1, x2, y2]

T ∈ R4 is
given by γ · [x1, y1, x2, y2]T = [x2, y2, x1, y1]

T . Also, a homomorphism ρ : Z2 = 〈σ〉 −→ GL(4,R)
defined by e → I, σ → −I, is a representation of Z2 on R4. Here, we see that the action of
σ on [x1, y1, x2, y2]

T ∈ R4 is given by σ · [x1, y1, x2, y2]T = −[x1, y1, x2, y2]
T . Now, if we define

f : R4 → R4 by f([x1, y1, x2, y2]
T ) = [ẋ1, ẏ1, ẋ2, ẏ2]

T , then we have that f(γ · [x1, y1, x2, y2]T ) =
γ · f([x1, y1, x2, y2]) and f(σ · [x1, y1, x2, y2]T ) = σ · f([x1, y1, x2, y2]). Therefore, system (1) has
Z2 × Z2 symmetry.

To find the maximal isotropy subgroups of Z2 × Z2, we start by looking at the subgroups
of Z2 × Z2 and then at their fixed point subspace. The nontrivial subgroups are Z2(γ), Z2(σ),
and Z2(γσ). From here, we get that Fix(Z2(γ)) = {[x, y, x, y]T : x, y ∈ <}, Fix(Z2(σ)) =
{[0, 0, 0, 0]T }, and Fix(Z2(γσ)) = {[x, y,−x,−y]T : x, y ∈ <}. Since [0, 0, 0, 0]T is also fixed by
the larger group Z2 × Z2, we have that the maximal isotropy subgroups are only those given in
Figure 1.

We give in the following theorem the summary of the above results.

Theorem 1. Z2(γ)×Z2(σ) is a symmetry group of the system of SL equations given in (1) and
its maximal nontrivial isotropy subgroups are Z2(γ) and Z2(γσ).
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Figure 1. Isotropy subgroup lattice diagram of Z2 × Z2.

2.2. Symmetric Steady-States
We now look for symmetric steady-state solutions. These are steady-states that are fixed by a
particular isotropy subgroup. The forms of these symmetric steady-state solutions are given in
the theorem below.

Theorem 2. Steady-states with Z2(γ) symmetry of the system given in (1) can be found by

solving for y = ±
√

−ε(a−2ω−ε)(a+2−ε)
ε(a−2ω−ε) ω and x = 1

2ω (−ε+ a)y or y = ±
√

−ε(a+2ω+ε)(a−2+ε)

ε(a+2ω+ε) ω and

x = 1
2ω (−ε − a)y, where a =

√
ε2 − 4ω2 + 4ωε. Also, steady-states with Z2(γσ) symmetry

can be found by solving for y = ±
√

−ε(b+2ω−ε)(b+2−ε)
ε(b+2ω−ε) ω and x = 1

2ω (−ε + b)y or y =

±
√

−ε(b−2ω+ε)(b−2+ε)

ε(b−2ω+ε) ω and x = 1
2ω (−ε− b)y, where b =

√
ε2 − 4ω2 − 4ωε. Moreover, the birth of

steady-states with Z2(γ) and Z2(σγ) symmetry along the branch of trivial solutions for different
values of ε is at ε = (1 + ω2)/(1 + ω) and ε = (1 + ω2)/(1− ω), respectively.

proof :
For steady-states with Z2(γ) symmetry (steady-states of the form [x, y, x, y]T ), we

solve the system

{
0 = (1− x2 − y2)x− ωy + ε(y − x)
0 = (1− x2 − y2)y + ωx

. This is equivalent to solving

0 = (−ω)x2 − (εy)x+ (ε− ω)y2, y 6= 0. Solving for x using the quadratic formula, we get
that x = 1

2ω (−ε ± a)y, where a =
√
ε2 − 4ω2 + 4ωε. For x = 1

2ω (−ε + a)y, we get

y = ±
√

−ε(a−2ω−ε)(a+2−ε)
ε(a−2ω−ε) ω and for x = 1

2ω (−ε−a)y, we get y = ±
√

−ε(a+2ω+ε)(a−2+ε)

ε(a+2ω+ε) ω. Now, to

determine the birth of steady-states with Z2(γ) symmetry along the branch of trivial solutions
for different values of ε, we solve for ε such that x = 0 and y = 0 in the formulas in the previous
line. Here, we get that ε = (1 + ω2)/(1 + ω).

Similarly, for steady-states with Z2(σγ) symmetry (steady-states of the form [x, y,−x,−y]T ),

we solve the system

{
0 = (1− x2 − y2)x− ωy + ε(−y − x)
0 = (1− x2 − y2)y + ωx

, which is equivalent to solving

0 = (−ω)x2 + (−εy)x − (ε + ω)y2, y 6= 0. Solving for x, we get x = 1
2ω (−ε ± b)y, where

b =
√
ε2 − 4ω2 − 4ωε. For x = 1

2ω (−ε + b)y, we get y = ±
√

−ε(b+2ω−ε)(b+2−ε)
ε(b+2ω−ε) ω and for

x = 1
2ω (−ε−b)y, we get y = ±

√
−ε(b−2ω+ε)(b−2+ε)

ε(b−2ω+ε) ω. Also, we have that the birth of steady-states

with Z2(σγ) symmetry along the branch of trivial solutions is at ε = (1 + ω2)/(1 − ω), which
does not exist for ω ≥ 1. �



2.3. Linearization and Block Diagonalization
At this point, we classify the symmetry of bifurcation points according to which block the critical
eigenvalue comes from. The classification is given by the succeeding theorem.

Theorem 3. If V1 = span{[1, 0, 1, 0]T }, V2 = span{[0, 1, 0, 1]T }, V3 = span{[1, 0,−1, 0]T },
V4 = span{[0, 1, 0,−1]T }, then Z2(γ) and Z2(σγ) lie in the isotropy subgroup of solutions (of (1)
near [0, 0, 0, 0]T ) coming from V1 ⊕ V2 and V3 ⊕ V4, respectively.

proof :
We first linearize system (1) around [0, 0, 0, 0]T , which is the steady-state solution with Z2 ×Z2

symmetry. To do this, we note that system (1) can be seen as a function of the variables
with delay and those without delay, that is, we can express system (1) into the form Ż(t) =
F (Z(t), Z(t − τ)). To get the linear variational equation around the trivial steady-state, we
compute dZ(t)F and dZ(t−τ)F then evaluate them at O := [0, 0, 0, 0]T . We get

M1 := dZ(t)F (O) =


1− ε −ω 0 0
ω 1 0 0
0 0 1− ε −ω
0 0 ω 1

 , M2 := dZ(t−τ)F (O) =


0 0 0 ε
0 0 0 0
0 ε 0 0
0 0 0 0

 ,
and the linear variational equation around [0, 0, 0, 0]T is Ż(t) = M1Z(t) + M2Z(t − τ). The
characteristic equation of this linear variational equation is given by det ∆(λ) = 0. Here,

L := ∆(λ) = λI −M1 − e−λτM2 =


A B 0 D
−B C 0 0
0 D A B
0 0 −B C

 ,
where A = λ − 1 + ε, B = ω, C = λ − 1, and D = −ε e−λτ . Now, our objective is to reduce
L into block diagonal form. In block diagonal form, we will be able to solve for eigenvalues
by dealing with smaller matrices and we can characterize the bifurcations depending on which
block the eigenvalue comes from. We begin by noting that Z2 × Z2 acts irreducibly on the
subspaces V1, V2, V3, and V4 with basis elements v1 = v · [1, 0, 1, 0]T , v2 = v · [0, 1, 0, 1]T , v3 =
v · [1, 0,−1, 0]T , and v4 = v · [0, 1, 0,−1]T . respectively. Observe that L(v1) = Av1 + (−B)v2 and

L(v2) = (B +D)v1 + Cv2. Therefore, L(v1 + v2) = E1

[
v1
v2

]
, where E1 :=

[
A −B

B +D C

]
.

Also, we have that L(v3 + v4) = E2

[
v3
v4

]
where E2 :=

[
A −B

B −D C

]
. Hence, in block

diagonal form, L is given by L = ∆(λ) =

[
E1 0
0 E2

]
and the eigenvalues of L|V1 ⊕ V2 and

L|V3⊕V4 are those of E1 and E2, respectively. This block diagonalization technique is patterned
from methods in equivariant theory given in [12].

Note that the action of Z2×Z2 breaks up R4 into R2⊕R2, where R2 = V1⊕V2 and R2 = V3⊕V4,
respectively. As observed in the block diagonalization process, the block E1 corresponds to the
action of L on R2 = V1 ⊕ V2 and the block E2 corresponds to the action of L on R2 = V3 ⊕ V4.
If the critical eigenvalue λ comes from the block E1, we get bifurcations with symmetry Z2(γ)
because Z2(γ) acts trivially on V1 ⊕ V2. To say it in another way, Z2(γ) lies in the isotropy
subgroup of solutions coming from V1⊕V2. If the critical eigenvalue λ comes from the block E2,
we get bifurcations with symmetry Z2(σγ) because Z2(σγ) acts trivially on V3 ⊕ V4. Similarly,
Z2(σγ) lies in the isotropy subgroup of solutions coming from V3 ⊕ V4. �



2.4. Symmetry-Breaking Bifurcation Points
Here, we find symmetry-breaking steady-state and Hopf bifurcation points along the branch of
trivial solutions, which is obtained by varying ε. That is, ε is our bifurcation parameter. Since
the ∆(λ) is a block diagonal matrix, the eigenvalues can be found by solving for λ in equations
det(E1) = 0 and det(E2) = 0. We have that, |E1| = (λ− 1 + ε)(λ− 1)− (ω − ε e−λτ )(−ω) = 0
and |E2| = (λ− 1 + ε)(λ− 1)− (ω + ε e−λτ )(−ω) = 0.

For steady-state bifurcation points, the critical eigenvalue λ is zero. Therefore, we find steady
state bifurcation points by evaluating the determinant at the eigenvalue λ = 0 and then solving

for ε. We do that for E1 and we get ε = 1+ω2

1+ω . For E2, we get ε = 1+ω2

1−ω . Observe that the steady-
state bifurcation points from E1 and E2 are also the point of birth of steady-state solutions with
Z2(γ) symmetry and Z2(σγ) symmetry along the branch of trivial solutions, respectively.

For Hopf bifurcation points, the critical eigenvalue λ is a pair of imaginary numbers.
Therefore, we find Hopf bifurcation points by evaluating the determinant at the eigenvalue
λ = iβ and then solving for ε and β. For |E1|λ=iβ = 0, we get a complex equation that
we separate into real and imaginary parts. We get, −β2 + 1 − ε + ω2 − ωε cos(βτ) = 0 and
β(2− ε)− ωε sin(βτ) = 0. These are two equations in the variables ε and β. We solve for the ε
and β values that satisfy these two equations by looking for their intersections using a computer
algebra package. Similarly, for |E2|λ=iβ = 0, we get, −β2 + 1 − ε + ω2 + ωε cos(βτ) = 0 and
−β(2− ε)− ωε sin(βτ) = 0.

As an example, we solve for values of ε where we get bifurcation points for given values of ω
and τ .

Steady-State Bifurcation Points Hopf Bifurcation Points
Z2(γ) symmetry Z2(σγ) symmetry Z2(γ) symmetry Z2(σγ) symmetry
ε = 0.833333 ε = 2.5 None ε = 2.105227

β = 0.443118

Table 1. Bifurcation points when ω = 0.5 and τ = 0.1

2.5. Branches of Symmetric Steady-States and Periodic Solutions
Finally, we use DDE-Biftool [13] to get branches of symmetric steady-state and periodic
solutions. As an example, we plot the symmetric steady states, computed using Theorem 2,
along the generated branches. We also plot the symmetry breaking bifurcation points and
illustrate the classification of symmetric solutions based on which block the critical eigenvalue
comes from.

We note that the trivial solution is the only steady-state solution with Z2 × Z2 symmetry.
We use DDE-Biftool to follow the trivial solution into a branch of trivial solutions by varying
ε. We observe from Figure 1 that from a branch of solutions with Z2 × Z2 symmetry, we can
expect a bifurcating branch of symmetric solutions with symmetry Z2(γ) and Z2(σγ). Also,
we have shown in subsection 2.3 and 2.4 that we can solve for symmetry-breaking bifurcation
points along the branch of trivial solutions.

We now generate a branch of trivial steady-state solutions using the following parameter
values: ω = 0.5, τ = 0.1, and ε is varied from 0 to 6. Furthermore, we plot along this branch
the steady-state and Hopf bifurcation points that were solved in Table 1. In DDE-BIftool, we
follow the steady state bifurcation points to get a bifurcating branch of steady-state solutions
with symmetry Z2(γ) and Z2(σγ). We also follow the Hopf bifurcation point to get a branch
of periodic solutions with symmetry Z2(σγ). Note that for these parameter values, there is no
Hopf bifurcation point with Z2(γ) symmetry. We give the plot in Figure 2 (Left). The profile
of the periodic solutions is given in Figure 2 (Right).
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Figure 2. (Left) Branch of trivial steady-states in the (ε, x1)−plane (pink). The red dot and
black dot along the branch of trivial steady-states correspond to the steady-state bifurcation
point with symmetry Z2(γ) and Z2(σγ), respectively. The black asterisk corresponds to Hopf
bifurcation point with Z2(σγ) symmetry. The branch of steady-states with Z2(γ) and Z2(σγ)
symmetry are colored blue and cyan, respectively. The red and black dots are steady-state
solutions that are computed using Theorem 2. The branch of periodic solutions with Z2(σγ)
symmetry is colored black. (Right) The profile of the periodic solutions in Figure 2 (Left) shows
that x1 = −x2 and y1 = −y2. This illustrates that the periodic solutions emanating from Hopf
bifurcations with λ = iβ coming from E2 have symmetry Z2(σγ).

We also perform the above process for the parameters: ω = 3, τ = 0.1, and ε is varied from 0
to 6 (see Figures 3 and 4). Here, we are not able to get a branch of steady-state solutions with
Z2(σγ) symmetry.
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Figure 3. Branch of Trivial Steady States in the (ε, x1)−plane (pink). The branch in blue
corresponds to a branch of steady-state solutions with Z2(γ) symmetry and the red dots are
steady-states that were computed using Theorem 2. The branch in red is the branch of periodic
solutions with Z2(γ) symmetry emanating from the Hopf bifurcation point, which is computed
with λ = iβ coming from E1. The branch in black is the branch of periodic solutions with
Z2(σγ) symmetry emanating from the Hopf bifurcation point, which is computed with λ = iβ
coming from E2.
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Figure 4. The profile of the periodic solutions in Figure 3 corresponding to the branch in red
and black, respectively. These profiles illustrate the Z2(γ) and Z2(σγ) symmetry of periodic
solutions emanating from Hopf bifurcations with λ = iβ coming from E1 and E2, respectively.

Now, DDE-Biftool can also determine the branch stability of different solutions. We utilize
this capability of DDE-Biftool to determine the stability of the branches of symmetric solutions
that are given in Figures 2 and 3. The resulting stability of the different branches are given in
Figure 5.
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Figure 5. The stability of the branches of symmetric solutions given in Figures 2 and 3. The
stable part of the branch is in green while the unstable part is in magenta.

3. Conclusion
The main result of this paper is the classification of the symmetry of solutions to the system
of mutually delay-coupled oscillators with conjugate coupling modeled via Stuart-Landau
equations, that is, the types of synchrony that can be attained by the oscillators. We found the
types of synchrony of steady-state solutions by identifying the nontrivial isotropy subgroups of
the symmetry group of the two-oscillator system. Specifically, we found that the steady-states



can have symmetry that are isomorphic to Z2. Also, we used the isotypic decomposition of the
physical space to block diagonalize the characteristic matrix of the linear variational equation
around the trivial steady-state solution. The isotypic decomposition is then utilized to classify
the type of synchrony of steady-state and Hopf bifurcations based on which diagonal block the
critical eigenvalue came from. Here, the symmetry of steady-state and Hopf bifurcations were
found to be isomorphic to Z2. The block diagonalization also simplifies the computation of
steady-state and Hopf bifurcation points. As an illustration, we did numerical continuation
and analysis using DDE-Biftool to generate branches of symmetric steady-state and periodic
solutions along the branch of trivial steady-state solutions and to determine the stability of
these branches.
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