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Abstract

For a nonnegative integer k  n, let Lk ⌘ Ik � �In�k. An A 2 Mn (C) is
called Lorentz if LkA

⇤Lk = A�1. Let OLk be the set of all Lorentz matrices. We
show that every A 2 OLk has a polar decomposition A = PU , where P is positive
definite, U is unitary, and both P and U are in OLk . We also show that for every
A 2 OLk , there exist nonnegative integers r and s, unitary P,Q 2 OLk , and positive
definite diagonal D,E 2 Mk�r (C) such that k � r = n� k � s, D2 � E2 = Ik�r, and

A = P
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1 Introduction

Our notation is standard as in [3, 4]. We let Mn (C) be the set of all n-by-n complex
matrices, and we let Hn be the set of all nonsingular Hermitian H 2 Mn (C). Let S 2
Mn (C) be nonsingular. Define ⇤S : Mn (C) ! Mn (C) by ⇤S (A) = S�1A⇤S. One
checks that for every A,B 2 Mn (C), we have ⇤S (AB) = ⇤S (B)⇤S (A). In particular, for

every positive integer k, we have ⇤S

�

Ak
�

= (⇤S (A))k. Now, for every ↵,� 2 C, we have

⇤S (↵A+ �B) = ↵⇤S (A) + �⇤S (B). Hence, if p (x) is a polynomial with real coe�cients,
then ⇤S (p (A)) = p (⇤S (A)).

One checks that ⇤S (A) = I if and only if A = I. It follows that if A is nonsingular, then
(⇤S (A))�1 = ⇤S

�

A�1
�

. Notice that ⇤S (⇤S (A)) = S�1S⇤AS�⇤S. Hence, if S 2 Hn,
then for every A 2 Mn (C), we have ⇤S (⇤S (A)) = A.

35
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Lemma 1. Let S 2 Mn (C) be nonsingular. Then ⇤S (⇤S (A)) = A for every A 2 Mn (C)
if and only if there exists H 2 Hn such that ⇤S = ⇤H .

Proof. The converse has just been shown. For the forward implication, suppose that

⇤S (⇤S (A)) = A for every A 2 Mn (C). Then, we have S�1S⇤A = AS�1S⇤, so that

there exists a nonzero ↵ 2 C such that S�1S⇤ = ↵I. Hence, S⇤ = ↵S or S = 1
↵S

⇤.

Observe now that ↵S = S⇤ =
�

1
↵S

⇤�⇤ = 1
↵S, so that ↵↵S = S. Thus, |↵| = 1 and there

exists ✓ 2 R such that ↵ = ei✓. Set H ⌘ e
i✓
2 S and notice that H⇤ = e�

i✓
2 S⇤ = e

i✓
2 S = H so

that H 2 Hn. Moreover, ⇤H (A) = H�1A⇤H = e�
i✓
2 S�1A⇤e

i✓
2 S = S�1A⇤S = ⇤S (A).

Let U 2 Mn (C) be unitary. Then U⇤ = U�1. Notice that U⇤ = ⇤H (U) when H = I.

Definition 2. Let H 2 Hn be given. A given B 2 Mn (C) is called ⇤H orthogonal if B is

nonsingular and ⇤H (B) = B�1
.

Let H 2 Hn be given. A ⇤H orthogonal matrix is also called H�unitary [6]. We denote
by OH the set of all ⇤H orthogonal matrices. Let A,B 2 OH be given. Then ⇤H (AB) =
⇤H (B)⇤H (A) = B�1A�1 = (AB)�1, so that OH is a group under multiplication. We
study OH . Now, for given H,G 2 Hn, there exists a nonsingular X 2 Mn (C) such that
H = X⇤GX if and only if the inertia of H (number of positive and negative eigenvalues)
is the same as the inertia of G. For such H and G, we have A�1 = H�1A⇤H if and

only if
�

XAX�1
��1

=
�

XH�1X⇤� (X�⇤A⇤X⇤)
�

X�⇤HX�1
�

= G�1
�

XAX�1
�⇤

G. Thus,
A 2 OH if and only if XAX�1 2 OG,

Lemma 3. Let H,G 2 Hn be given. Suppose that H and G have the same inertia, so that

there exists a nonsingular X 2 Mn (C) such that H = X⇤GX. Then A 2 OH if and only

if XAX�1 2 OG.

LetH 2 Hn be given. There exist a nonnegative integer k and a nonsingularX 2 Mn (C)
such that Lk ⌘ Ik � �In�k and H = X⇤LkX. Notice that Lk 2 Hn. An A 2 OLk is
also called a Lorentz matrix [1, 2, 6]. It is a generalization of unitary matrices to the
indefinite product induced by Lk. We note that there are two such indefinite products.
Let x = [xi] 2 Cn be given. One such indefinite product is given by hx, xi1,Lk

= xTLkx =

x2
1 + · · · + x2

k � x2
k+1 � · · · � x2

n. The other indefinite product is given by hx, xi2,Lk
=

x⇤Lkx = |x1|2+ · · ·+ |xk|2� |xk+1|2� · · ·� |xn|2. We are interested in the second indefinite
product. We show that every A 2 OLk has a polar decomposition A = PU , where P is
positive definite, U is unitary, and both P and U are in OLk . We also show that for
every A 2 OLk , there exist nonnegative integers r and s, unitary P,Q 2 OLk , and positive
definite diagonal D,E 2 Mk�r (C) such that k � r = n � k � s, D2 � E2 = Ik�r, and

A = P

✓

Ir �


D E
E D

�

� Is

◆

Q⇤.

2 Lorentz Matrices

Let an integer 0  k  n be given. Let U1 2 Mk (C) and let U2 2 Mn�k (C) be both
unitary. Then B ⌘ U1 � U2 2 OLk . Conversely, suppose that C 2 OLk is unitary.
Then LkC�1Lk = LkC⇤Lk = ⇤Lk (C) = C�1. Consequently, LkC = CLk. Writing
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C =



C11 C12

C21 C22

�

, conformal to Lk, one checks that C12 = 0 and that C21 = 0. Since C

is unitary, both C11 and C22 are unitary.

Proposition 4. Let C 2 OLk be given. Then C is unitary if and only if there exist unitary

C1 2 Mk (C) and C2 2 Mn�k (C) such that C = C1 � C2.

The set of unitary matrices in OLk is a subgroup of OLk under multiplication. Our
approach is to study normal (AA⇤ = A⇤A) matrices in OLk . Normal matrices are unitarily
diagonalizable. Moreover, if X and Y 2 Mn (C) are normal, then X is similar to Y if and
only if X is similar to Y with a unitary matrix as a matrix of similarity. Suppose that B
and C are in OLk and are both normal. If B is similar to C, can the matrix of similarity
be taken to be a unitary in OLk?

Consider L1 = diag(1,�1). Let A = L1 and let B = �L1. Then A and B are both
⇤L1 orthogonal. Moreover, A is similar to B. The set of unitary matrices in OL1 is
�

diag
�

ei✓, ei�
�

: ✓,� 2 R
 

. Hence, A and B cannot be similar using a unitary matrix in
OL1 .

The form of a unitary matrix in OLk gives rise to the following definitions.
Let x = [xi] 2 Cn be given. Suppose that 0 < k < n. If x1 = · · · = xk = 0, then we

call x a (0, n� k) vector. If xk+1 = · · · = xn = 0, then we call x a (k, 0) vector. We let Ak

be the set of all (k, 0) vectors, and we let Bn�k be the set of all (0, n� k) vectors. Notice
that for every y 2 Cn, we have y+Lky 2 Ak, while y�Lky 2 Bn�k. Each of Ak and Bn�k

is a subspace of Cn.
Let A 2 Mn (C) be normal. Then x 2 Cn is an eigenvector of A corresponding to � if

and only if x is an eigenvector of A⇤ corresponding to �. This follows from the fact that A
is unitarily diagonalizable. If x 2 Cn is an eigenvector of A corresponding to �, if y 2 Cn

is an eigenvector of A corresponding to �, and if � 6= �, then x⇤y = 0, that is, x and y are
orthogonal. For � an eigenvalue of A, set V� ⌘ {x 2 Cn : Ax = �x}. Notice that V� is a
vector space. Let dim(V�) denote the dimension of V�. If � and � are distinct eigenvalues
of A, then V� and V� are orthogonal. If x 2 V�, then A (Ax) = A (�x) = � (Ax) so that
Ax 2 V�. Suppose that Ax 2 V�. If A is singular, then x need not be in V� – take z 2 V�,
let 0 6= y be such that Ay = 0, and let x = z + y Then Ax = Az 2 V�, however, there is
no guarantee that x 2 V�. If A is nonsingular, however, then A (Ax) = � (Ax) implies that
Ax = �x and x 2 V�. Let V ?

� ⌘ {y 2 Cn : y⇤x = 0 for every x 2 V�} be the orthogonal

complement of V� in Cn. Then, span
�

V�, V ?
�

 

= Cn, that is, for every z 2 Cn, there exist
x 2 V� and y 2 V ?

� such that z = x + y. Let y 2 V ?
� be given. Write Ay = u + v, with

u 2 V� and v 2 V ?
� . Then 0 =

�

�u
�⇤

y = (A⇤u)⇤ y = u⇤Ay = u⇤ (u+ v) = u⇤u so that
u = 0. Hence, if y 2 V ?

� , then Ay 2 V ?
� . Let � and � be distinct eigenvalues of A. Set

V = span{V�, V�}, and let V ? be the orthogonal complement of V in Cn. Let x 2 V be
given. There exist y 2 V� and z 2 V� such that x = y + z. Notice that Ay 2 V� and that
Az 2 V� , hence, Ax 2 V . Consequently, if x 2 V ?, then Ax 2 V ?.

Lemma 5. Let A 2 OLk be normal. Then x 2 Cn
is an eigenvector of A corresponding to

the eigenvalue � if and only if Lkx is an eigenvector of A corresponding to the eigenvalue

1
�
.

Proof. Let x 2 Cn be an eigenvector of A corresponding to �. Then Ax = �x and we also

have A⇤x = �x. Hence, �Lkx = LkA⇤x = LkA⇤LkLkx = A�1Lkx, so that ALkx = 1
�
Lkx.

The other direction can be shown by setting y = Lkx and � = 1
�
, and noting that Lky = x

and 1
�
= �.
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Let A = {x1, ..., xt} be an orthonormal set. Then (Lkxp)
⇤ (Lkxq) = x⇤

pxq for every
p, q = 1, ..., t. Hence, B = {Lkx1, ..., Lkxt} is also an orthonormal set. For p = 1, ..., t, set
yp = xp + Lkxp, set zp = xp � Lkxp, and set

C = {y1, ..., yt, z1, ..., zt} . (1)

Then xp = 1
2 (yp + zp) and Lkxp = 1

2 (yp � zp) so that span(C) = span(A [ B). Notice that
each yp 2 Ak, while each zj 2 Bn�k.

Suppose that |�| = 1. Then Lemma 5 guarantees that x 2 V� if and only if Lkx 2 V�.
Moreover, because V� is a vector space, x+ Lkx and x� Lkx are also in V�. Let A be an
orthonormal basis of V� and let C be as in Eq. (1). Then, V� = span(C). Let E be a maximal
linearly independent subset of C. Then E is a basis of V�. Write E = E1 [ E2, where E1
contains only (k, 0) vectors and E2 contains only (0, n� k) vectors. Let F1 = {f11, ..., f1p}
be an orthonormal basis of span(E1) and let F2 = {f21, ..., f2q} be an orthonormal basis
of span(E2). Then F1 [ F2 is an orthonormal basis for V� consisting only of vectors from
Ak [ Bn�k.

Lemma 6. Let A 2 OLk be normal. Let �1, ...,�t be the distinct eigenvalues of A with

|�1| = · · · = |�t| = 1. Then, for each p, q = 1, ...t if p 6= q, then V�p and V�q are orthogonal.

For each p = 1, ..., t, V�p has an orthonormal basis consisting only of vectors from Ak[Bn�k
.

Suppose that |�| 6= 1, so that � 6= 1
�
. Set ↵ ⌘ 1

�
. Then x 2 V� if and only if

Lkx 2 V↵. Moreover, V� and V↵ are orthogonal subspaces and dim(V�) = dim(V↵). Let
A = {x1, ..., xt} be an orthonormal basis of V�. Then (Lkxp)

⇤ (Lkxq) = x⇤
pxq for every

p, q = 1, ..., t. Hence, B = {Lkx1, ..., Lkxt} is an orthonormal basis for V↵. Moreover,
{x1, ..., xt, Lkx1, ..., Lkxt} is also an orthonormal set and is a basis of span(A [ B). Let C
be as in equation 1 so that span(C) = span(A [ B). Then C is also a basis of span(A [ B).
Now, each yp is a (k, 0) vector and each zq is a (0, n� k) vector. Hence, we have t  k and
t  n � k. Notice that for every p, q = 1, ..., t we have (1) y⇤pzq = 0, (2) if p 6= q, then we

have y⇤pyq = z⇤pzq = 0, and (3) y⇤pyp = z⇤pzp = 2. For p = 1, ..., t, let up = 1p
2
yp and let

vp = 1p
2
zp. Then {u1, ..., ut, v1, ..., vt} is an orthonormal basis of span(A [ B).

Lemma 7. Let A 2 OLk be normal. Let �1, ...,�t be the distinct eigenvalues of A with

|�1| � · · · � |�t| > 1. For each p = 1, ..., t, set ↵p = 1
�p

. Then, for each p, q = 1, ...t

we have (i) V�p and V↵q are orthogonal, (ii) if p 6= q, then V�p and V�q are orthogo-

nal, and (iii) if p 6= q, then V↵p and V↵q are orthogonal. For each p = 1, ...,mp, if

Ap =
�

xp1, ..., xpmp

 

is an orthonormal basis for V�p , then Bp =
�

Lkxp1, ..., Lkxpmp

 

is

an orthonormal basis for V↵p . Set ypq = 1p
2
(xpq + Lkxpq), set zpq = 1p

2
(xpq � Lkxpq),

and set Cp =
�

yp1, ..., ypmp , zp1, ..., zpmp

 

. Then each ypq 2 Ak
, each zpq 2 Bn�k

, and each

Cp is an orthonormal basis of span(Ap [ Bp). Moreover, we have

Pt
p=1dim

�

V�p

�

 k and

Pt
p=1dim

�

V�p

�

 n� k.

For p = 1, ..., t, let yp and zp be as in equation (1), let up = 1p
2
yp, and let vp =

1p
2
zp so that {u1, ..., ut, v1, ..., vt} is an orthonormal basis of span(A [ B). Hence, Aup =

1p
2
A (xp + Lkxp) =

1p
2

⇣

�xp +
1
�
Lkxp

⌘

= 1p
2

⇣

� 1
2 (yp + zp) +

1
�

1
2 (yp � zp)

⌘

= 1
2

⇣

�+ 1
�

⌘

up+

1
2

⇣

�� 1
�

⌘

vp. Similarly, Avp = 1
2

⇣

�� 1
�

⌘

up +
1
2

⇣

�+ 1
�

⌘

vp.
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Theorem 8. Let A 2 OLk be normal. Let � (A) =
n

�1, ...,�t,
1
�1
, ..., 1

�t

o

with |�1| � · · · �
|�t| > 1. For each p = 1, ..., t, if the multiplicity of �p is sp, then the multiplicity of

1
�p

is

also sp. Moreover, we have n = 2k = 2
Pt

p=1 sp. For p = 1, ..., t, set ↵p = 1
�p

, set �p =
1
2 (�p + ↵p), set �p = 1

2 (�p � ↵p), set Dp = �pIsp , set Ep = �pIsp , set D = D1 � · · · �Dt,

and set E = E1 � · · ·�Et. There exists a unitary P 2 OLk such that P ⇤AP =

"

D E

E D

#

.

Proof. For p = 1, ..., t, set ↵p = 1
�p

, set �p = 1
2 (�p + ↵p), and set �p = 1

2 (�p � ↵p). Because

dim
�

V�p

�

= dim
�

V↵p

�

, we have k = n� k so that n = 2k = 2
Pt

p=1 sp, as desired.

Let ypq and zpq be as in Lemma 7. Set Yp =
⇥

yp1 · · · ypmp

⇤

, set Zq =
⇥

zq1 · · · zqmq

⇤

, and

set P = [Y1 · · ·Yt Z1 · · ·Zt]. SetDp = diag(�p, ...,�p) 2 Mmp (C), set Ep = diag(�p, ..., �p) 2

Mmp (C), set D = D1� · · ·�Dt, set E = E1� · · ·�Et., and set M =

"

D E

E D

#

. Because

each ypq 2 Ak and each zpq 2 Bk, there exist unitary Q1 2 Mk (C) and Q2 2 Mn�k (C)
such that P = Q1 � Q2. Thus, P is unitary and P 2 OLk . Moreover, one checks that

AP = PM .

Let A 2 OLk be normal, and that � (A) =
n

�1, ...,�t,
1
�1
, ..., 1

�t

o

with |�1| � · · · �
|�t| > 1. For p = 1, ..., t, let �p, ↵p, �p, �p, Dp, and Ep be as in Theorem 8. Write

�p = |�p| ei✓p . Then ↵p = 1
|�p|e

i✓p , �p = 1
2

⇣

|�p|+ 1
|�p|

⌘

ei✓p , and �p = 1
2

⇣

|�p|� 1
|�p|

⌘

ei✓p .

Set Cp = 1
2

⇣

|�p|+ 1
|�p|

⌘

Isp , set Wp = ei✓pIsp , and set Fp = 1
2

⇣

|�p|� 1
|�p|

⌘

Isp . Let

C = C1 � · · · � Ct, let W = W1 � · · · � Wt, and let F = F1 � · · · � Ft. Then D = CW
and E = FW . Set U = W � W . Then U is unitary and U 2 OLk . Moreover,

MU⇤ =



C F
F C

�

. Let X = 1p
2



I I
�I I

�

2 Mn (C). One checks that X is unitary

and that XMU⇤X⇤ = (C + F ) � (C � F ). Now, C + F = |�1| Is1 � · · · � |�t| Ist and
C � F = 1

|�1|Is1 � · · · � 1
|�t|Ist , so that XMU⇤X⇤ is positive definite. If A is positive

definite, then we may take each ✓p = 0, so that W = I.

Corollary 9. Let A 2 OLk be normal. Let � (A) =
n

�1, ...,�t,
1
�1
, ..., 1

�t

o

with |�1| � · · · �

|�t| > 1. For p = 1, ..., t, suppose that �p has multiplicity sp. Set �p = 1
2

⇣

|�p|+ 1
|�p|

⌘

,

set �p = 1
2

⇣

|�p|� 1
|�p|

⌘

, set Dp = �pIsp , set Ep = �pIsp , set D = D1 � · · · � Dt, and set

E = E1 � · · · � Et. There exist unitary P,Q 2 OLk such that P ⇤AQ =

"

D E

E D

#

. If A

is also positive definite, then we may take Q = P .

Notice that both D and E are positive definite, and that D2 �E2 = I. Moreover, both
D and E are determined by the eigenvalues of A (assuming the eigenvalues do not lie on
the unit circle).

Let A 2 OLk be normal. Suppose that the distinct eigenvalues of A that are on the unit
circle are �1, ...,�t. Let V� = span{V�1 , ..., V�t}. Lemma 6 guarantees that for p = 1, ..., t,
each V�i has orthonormal basis in Ak[Bn�k. Let A1 = {x1, ..., xr} be the set of such vectors
in Ak and let B1 = {y1, ..., ys} be the set of such vectors in Bn�k. Then j ⌘ k�r = n�k�s.
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Extend A1 to a basis of Ak, say A2 = {x1, ..., xr, ..., xk} and extend B1 to a basis of Bn�k, say
B2 = {z1, ..., zj , y1..., ys}. Notice that V ?

� = span{xr+1, ..., xk, z1, ..., zj}. If x 2 V�, then
Ax 2 V�. In particular, if x 2 span(A1), then Ax 2 span(A1); and if x 2 span(B1), then
Ax 2 span(B1). If x 2 V ?

� , then Ax 2 V ?
� . If x 2 V� and if y 2 V ?

� , then x⇤Ay = 0 = y⇤Ax.
Let X = [x1 · · ·xk], let Z = [z1 · · · zj ], let Y = [y1 · · · ys], and let P = [X Z Y ]. There exist
unitary Q1 2 Mk (C) and unitary Q2 2 Mn�k (C) such that P = Q1�Q2, so that P 2 OLk .
For p = 1, ..., r, suppose that Axp = �mpxp, and for q = 1, ..., s, suppose that Ayq = �tqyq.
Let ⌃1 = diag(�m1 , ...,�mr ) and let ⌃2 = diag(�t1 , ...,�ts). There exists N 2 M2j (C)
such that P ⇤AP = ⌃1 � N � ⌃2. Because A 2 OLk , we have N 2 OLj . Moreover, the
eigenvalues of N do not lie on the unit circle (as the eigenvalues of N are the remaining
eigenvalues of A). Corollary 9 guarantees that there exist unitary P1, Q1 2 OLj , positive

definite diagonal D,E 2 Mj (C) such that D2 � E2 = I and P ⇤
1NQ1 =



D E
E D

�

. Set

P2 = ⌃1 �P1 �⌃2 and set Q2 = It �Q1 � Is. Then, P2 and Q2 are both unitary and both
are in OLk . Moreover, P ⇤

2 P
⇤APQ2 = It � P ⇤

1NQ1 � Is.

Theorem 10. Let A 2 OLk be normal. There exist nonnegative integers r and s, unitary

P,Q 2 OLk , positive definite diagonal D,E 2 Mk�r (C) such that (1) k� r = n� k� s, (2)

D2 �E2 = Ik�r, and (3) A = P

 

Ir �
"

D E

E D

#

� Is

!

Q⇤
. If A is also positive definite,

then we may take (a) Q = P and (b) take D � E to be positive definite.

Let B 2 OLk be given. Then BB⇤ and B⇤B are also in OLk . Moreover, both BB⇤ and
B⇤B are positive definite, and BB⇤ is similar to B⇤B. For a normal A 2 OLk , notice that
the positive definite matrices D and E in Theorem 10 are determined by the eigenvalues
of A that are not lying on the unit circle. Once these are determined, the integers r
and s are easily determined. Theorem 10 guarantees that there exist unitary P,Q 2 OLk

such that P ⇤BB⇤P = Ir �


D E
E D

�

� Is = Q⇤B⇤BQ. Let Z = QP ⇤. Then Z 2 OLk

and is also unitary. Moreover, BB⇤ = Z⇤B⇤BZ. Set C = BZ. Then C 2 OLk and
C⇤C = Z⇤B⇤BZ = BB⇤ = CC⇤, so that C is normal, as well. Theorem 10 now shows the
following.

Corollary 11. Let A 2 OLk be given. There exist nonnegative integers r and s, unitary

P,Q 2 OLk , and positive definite diagonal D,E 2 Mk�r (C) such that k � r = n � k � s,

D2 � E2 = Ik�r, and A = P

 

Ir �
"

D E

E D

#

� Is

!

Q⇤
.

Let A 2 OLk be given. Let the integers r and s, the unitary P,Q 2 OLk , and
positive definite diagonal matrices D,E 2 Mk�r (C) be as in Corollary 11. Set X =

Ir �


D E
E D

�

� Is. Set j = k � r. Let V = 1p
2



I I
�I I

�

2 M2j (C). One checks that

K ⌘


D E
E D

�

= V ⇤


D + E 0
0 D � E

�

V . Write D + E = diag(a1, ..., aj) and write

D�E = diag(b1, ..., bj). Then for each p = 1, .., j, we have bp = 1
ap
. Let cp = ln (ap), so that

ln (bp) = �cp. Let C = diag(c1, ..., cj), and let G = C ��C. Then K = V ⇤eGV = eV
⇤GV .

Now, V ⇤GV =



0 C
C 0

�

.
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Corollary 12. Let A 2 OLk be given. There exist nonnegative integers r and s, unitary

P,Q 2 OLk , positive definite diagonal D 2 Mk�r (C) such that k � r = n � k � s, F =

0r �
"

0 D

D 0

#

� 0s, and A = PeFQ⇤
.

Notice that in Corollary 11, A = PXQ⇤ = PXP ⇤ (PQ⇤), that PXP ⇤ is positive defi-
nite, that PQ⇤ is unitary, and that both PXP ⇤ and PQ⇤ are in OLk . This is the polar
decomposition of A. We present a di↵erent proof. First, notice that if A 2 OLk , then

LkA⇤Lk = A�1. Taking the conjugate, we have Lk

�

A
�⇤

Lk =
�

A
��1

so that A 2 OLk .
Similarly, it can be shown that AT and A⇤ are also in OLk .

Theorem 13. Let A 2 OLk be given. There exist P,U 2 OLk with P positive definite and

U unitary such that A = PU .

Proof. Let A 2 OLk be given. Then A⇤ 2 OLk and hence, AA⇤ 2 OLk . Notice that AA⇤

is positive definite. Let q (x) be a polynomial that interpolates
p
x in the joint spectrum

of AA⇤ and (AA⇤)�1. Then we may choose q (x) to be a real polynomial. If q (AA⇤) =

P , then P is positive definite and q
⇣

(AA⇤)�1
⌘

= P�1. Now, P�1 = q
⇣

(A⇤A)�1
⌘

=

q (⇤H (A⇤A)) = ⇤H (q (A⇤A)) = ⇤H (P ) and P 2 OLk . Set U ⌘ P�1A. Then U 2 OLk

(as both A and P are), U⇤U = P�1A⇤AP�1 = I, and A = PU , as desired.

Let H 2 Hn be given, and suppose that there exists a nonsingular X 2 Mn (C) such
that H = X⇤LkX. Let A 2 OH be given. Lemma 3 guarantees that XAX�1 2 OLk .
Moreover, Lemma 13 ensures that XAX�1 = PU , with P,U 2 OLk , P is positive definite,
and U is unitary. Now, A =

�

X�1PX
� �

X�1UX
�

, and notice that both X�1PX and
X�1UX are in OH . Notice also that both X�1PX and X�1UX are diagonalizable, with
X�1PX having positive eigenvalues and X�1UX having eigenvalues that are on the unit
circle. Such a factorization is known as the Iwasawa decomposition [5, Lemma 3.12].

Corollary 14. Let H 2 Hn be given, and suppose that there exists a nonsingular X 2
Mn (C) such that H = X⇤LkX. Then A 2 OH if and only if there exist W,V 2 OH such

that both W and V are diagonalizable, W has positive eigenvalues, V has eigenvalues that

are on the unit circle, and A = WV .
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