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Abstract

For a nonnegative integer k < n, let Ly = I & —I,—x. An A € M, (C) is
called Lorentz if LiA*Li, = A™'. Let Or, be the set of all Lorentz matrices. We
show that every A € Or, has a polar decomposition A = PU, where P is positive
definite, U is unitary, and both P and U are in Or,. We also show that for every
A € O, there exist nonnegative integers r and s, unitary P,Q € Or,, and positive
definite diagonal D, E € My_, (C) such that k —r =n—k — s, D? - E?*=1,_,, and

1 Introduction

Our notation is standard as in [3, 4]. We let M,, (C) be the set of all n-by-n complex
matrices, and we let H,, be the set of all nonsingular Hermitian H € M, (C). Let S €
M,, (C) be nonsingular. Define Ag : M, (C) — M, (C) by Ag(A) = S71A*S. One
checks that for every A, B € M,, (C), we have Ag (AB) = As (B) Ags (4). In particular, for
every positive integer k, we have Ag (Ak) = (Ag (A))k. Now, for every a, 8 € C, we have
As (aA+ BB) = aAg (A) + BAs (B). Hence, if p (z) is a polynomial with real coefficients,
then Ag (p(A)) = p(As (4)).

One checks that Ag (A) = I if and only if A = I. Tt follows that if A is nonsingular, then
(As(A)™" = As(A™).  Notice that Ag (As (A)) = S1S*AS™*S. Hence, if S € H,,
then for every A € M, (C), we have Ag (As (4)) = A.
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Lemma 1. Let S € M, (C) be nonsingular. Then Ag (As (A)) = A for every A € M, (C)
if and only if there exists H € H,, such that Asg = Ap.

Proof. The converse has just been shown. For the forward implication, suppose that
As (As(A)) = A for every A € M, (C). Then, we have S71S*A = AS~15* so that
there exists a nonzero o € C such that S~'S* = al. Hence, S* = aS or S = iS*.
Observe now that S = S* = (éS*)* = %S, so that aaS = S. Thus, |a| = 1 and there
exists 6 € R such that o = ¢?. Set H = e% S and notice that H* = e~ %2 S* = e% S = H so
that H € H,. Moreover, Ay (A) = H'A*H = e~ 75 1A%e7 8 = §71A*S = Ag (A). O

Let U € M, (C) be unitary. Then U* = U~!. Notice that U* = Ay (U) when H = I.

Definition 2. Let H € H,, be given. A given B € M,, (C) is called Ay orthogonal if B is
nonsingular and Ag (B) = B~1.

Let H € H,, be given. A Ay orthogonal matrix is also called H—unitary [6]. We denote
by Op the set of all Ay orthogonal matrices. Let A, B € Oy be given. Then Ay (AB) =
Ap (B)Agy (A) = B1A™1 = (AB)™, so that Oy is a group under multiplication. We
study Op. Now, for given H,G € H,, there exists a nonsingular X € M, (C) such that
H = X*GX if and only if the inertia of H (number of positive and negative eigenvalues)
is the same as the inertia of G. For such H and G, we have A~' = H'A*H if and
only if (XAX*1)71 = (XH'X*) (XA X*) (X *HX ') =G} (XAXfl)* G. Thus,
A € Oy if and only if XAX~! € Og,

Lemma 3. Let H,G € H, be given. Suppose that H and G have the same inertia, so that
there exists a nonsingular X € M, (C) such that H = X*GX. Then A € Oy if and only
if XAX™ 1€ Og.

Let H € H,, be given. There exist a nonnegative integer k and a nonsingular X € M,, (C)
such that Ly = I, & —1I,—, and H = X*L;X. Notice that Ly € H,,. An A € Oy, is
also called a Lorentz matrix [1, 2, 6]. It is a generalization of unitary matrices to the
indefinite product induced by L. We note that there are two such indefinite products.
Let z = [z;] € C" be given. One such indefinite product is given by (z,z), ; = 2T Lyx =

@i+ -+ aj —aj, — - —x,. The other indefinite product is given by (z,z), ; =

e Lz = |z P4+ |zk]® = |zega|* — - — |zn|®. We are interested in the second indefinite
product. We show that every A € Or, has a polar decomposition A = PU, where P is
positive definite, U is unitary, and both P and U are in Op,. We also show that for
every A € Oy, , there exist nonnegative integers r and s, unitary P,Q € Oy, , and positive
definite diagonal D,E € My_, (C) such that k —r = n -k —s, D> — E? = I;_,, and

A:P(Ir@[g g}@ls)@ﬂ

2 Lorentz Matrices

Let an integer 0 < k < n be given. Let U; € My (C) and let Uy € M,,_ (C) be both
unitary. Then B = U; ® Uy € Op,. Conversely, suppose that C' € Oy, is unitary.
Then LyC~ 'Ly = LyC*Ly = A, (C) = C~'.  Consequently, LyC = CL;. Writing
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Cin Cr2

C =
{ Co1 Ca
is unitary, both C7; and Css are unitary.

], conformal to Ly, one checks that C;5 = 0 and that Cy; = 0. Since C

Proposition 4. Let C € Oy, be given. Then C is unitary if and only if there exist unitary
Cy € My, (C) and Cy € My, (C) such that C = Cy @ Cs.

The set of unitary matrices in O, is a subgroup of Op, under multiplication. Our
approach is to study normal (AA* = A*A) matrices in Op,. Normal matrices are unitarily
diagonalizable. Moreover, if X and Y € M,, (C) are normal, then X is similar to Y if and
only if X is similar to Y with a unitary matrix as a matrix of similarity. Suppose that B
and C are in Oy, and are both normal. If B is similar to C, can the matrix of similarity
be taken to be a unitary in O, ?

Consider L; = diag(1l,—1). Let A = Ly and let B = —L;. Then A and B are both
Ay, orthogonal. Moreover, A is similar to B. The set of unitary matrices in Oy, is
{diag (ew, eiﬁ) 10,6 € R}. Hence, A and B cannot be similar using a unitary matrix in
Or,.

The form of a unitary matrix in O, gives rise to the following definitions.

Let = [x;] € C™ be given. Suppose that 0 < k <n. Ifzy =--- =z = 0, then we
call z a (0,n — k) vector. If x4 =--- =z, =0, then we call z a (k,0) vector. We let A¥
be the set of all (k,0) vectors, and we let B"~* be the set of all (0,n — k) vectors. Notice
that for every y € C", we have y+ Ly € A*, while y — Ly € B"*. Each of A* and B»*
is a subspace of C".

Let A € M, (C) be normal. Then z € C™ is an eigenvector of A corresponding to A if
and only if x is an eigenvector of A* corresponding to A\. This follows from the fact that A
is unitarily diagonalizable. If x € C™ is an eigenvector of A corresponding to A, if y € C"
is an eigenvector of A corresponding to 3, and if A # 3, then z*y = 0, that is, = and y are
orthogonal. For A an eigenvalue of A, set V) = {z € C" : Az = Az}. Notice that V) is a
vector space. Let dim(V)) denote the dimension of V. If A and § are distinct eigenvalues
of A, then V) and V3 are orthogonal. If x € V), then A (Ax) = A(Az) = A (Az) so that
Ax € V. Suppose that Az € V). If A is singular, then z need not be in V) — take z € Vj,
let 0 # y be such that Ay = 0, and let * = z +y Then Az = Az € V), however, there is
no guarantee that z € V. If A is nonsingular, however, then A (Ax) = A (Az) implies that
Ax = dx and z € V). Let V/\L = {y € C": y*z =0 for every x € V\} be the orthogonal
complement of Vy in C". Then, span{V,\, VAL} = C", that is, for every z € C", there exist
z €V and y € Vi- such that 2 =z +y. Let y € V& be given. Write Ay = u + v, with
u € Vyand v € Vit. Then 0 = (Xu)*y = (A*u)"y = u* Ay = v* (u+v) = u*u so that
u=0. Hence, if y € V&, then Ay € Vi-.  Let X and 3 be distinct eigenvalues of A. Set
V = span{Vjy, V3}, and let V+ be the orthogonal complement of V in C". Let z € V be
given. There exist y € V) and z € Vg such that x = y + 2. Notice that Ay € V) and that
Az € Vg, hence, Az € V. Consequently, if x € V+, then Az € V*+.

Lemma 5. Let A € Oy, be normal. Then x € C" is an eigenvector of A corresponding to

the eigenvalue X\ if and only if Liyx is an eigenvector of A corresponding to the eigenvalue
1

<
Proof. Let x € C™ be an eigenvector of A corresponding to A. Then Ax = Az and we also
have A*z = Az. Hence, ALyx = LyA*x = Ly A*LyLiyx = A 'Ly, so that AL,z = %ka.
The other direction can be shown by setting y = Lyx and 8 = %, and noting that Lyy = x
and % =\ O
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Let A = {21,...,2¢} be an orthonormal set. Then (Lpxp,)" (Lrzy) = x)x4 for every
p,q=1,....,t. Hence, B = {Lyx,...,Lyz:} is also an orthonormal set. For p = 1,..., ¢, set
Yp = Tp + Lixp, set z, = x, — Ly, and set

C=AY1, s Yty 21, ey 2t } - (1)

Then z;, = % (yp + 2,) and Lz, = 3 (y, — 2p) so that span(C) = span(AU B). Notice that
each y, € A*, while each z; € B"~F.

Suppose that |A\| = 1. Then Lemma 5 guarantees that x € V) if and only if Lyz € V).
Moreover, because V) is a vector space, x + Lyx and © — Lz are also in V). Let A be an
orthonormal basis of V) and let C be as in Eq. (1). Then, V) =span(C). Let £ be a maximal
linearly independent subset of C. Then £ is a basis of V. Write & = & U &, where &
contains only (k,0) vectors and & contains only (0,n — k) vectors. Let F1 = {f11,.., f1p}
be an orthonormal basis of span(€y) and let Fo = {fo1, ..., f2q} be an orthonormal basis

of span(€s). Then F; U F» is an orthonormal basis for V) consisting only of vectors from
AP UBnF,

Lemma 6. Let A € O, be normal. Let A\q,...,\; be the distinct eigenvalues of A with

|Ai| == |X| = 1. Then, for eachp,q=1,..t if p# q, then V), and Vy, are orthogonal.

For eachp =1,....t, Vs, has an orthonormal basis consisting only of vectors from AFUB"—F,

Suppose that |[A\| # 1, so that A # % Set a = % Then x € V), if and only if
Lyx € V. Moreover, V) and V,, are orthogonal subspaces and dim(V)) = dim(V,,). Let
A = {x1,....,2;} be an orthonormal basis of Vx. Then (Lyxp)* (Lrze) = 2z, for every
p,q = 1,..,t. Hence, B = {Lyx,...,Lyz} is an orthonormal basis for V,,. Moreover,
{z1,...,x¢, L2, ..., L } is also an orthonormal set and is a basis of span(AU B). Let C
be as in equation 1 so that span(C) = span(.AU B). Then C is also a basis of span(A U B).
Now, each yj, is a (k,0) vector and each z, is a (0,n — k) vector. Hence, we have ¢t < k and
t < n —k. Notice that for every p,q = 1,...,t we have (1) y;2z, = 0, (2) if p # ¢, then we
have yry, = 2,2 = 0, and (3) yryp = 252, = 2. For p = 1,...,¢, let u, = %yp and let
vp = %zp. Then {uy, ..., us, v1,...,v } is an orthonormal basis of span(A U B).

Lemma 7. Let A € O, be normal. Let A\i,...,\s be the distinct eigenvalues of A with
[Adil > -+ > || > 1. For eachp =1,..,t, set ap = )\:1’) Then, for each p,q = 1,...t
we have (i) V, and V,, are orthogonal, (ii) if p # q, then Vy, and V, are orthogo-
nal, and (i) if p # q, then Vo, and V,, are orthogonal.  For each p = 1,...,my, if
A, = {xpl,...,xpmp} is an orthonormal basis for V), then B, = {Lkmpl,...,kapmp} 18
an orthonormal basis for V,,. Set ypq = % (Tpg + Litpq), set zpg = % (xpg — LiTpq),
and set Cp, = {ypl, vy Ypmy s Zpls - e zpmp}. Then each ypq € AF each Zpq € B *, and each
Cp is an orthonormal basis of span(A, U B,). Moreover, we have Z;:l dim(Vy,) < k and

Sy dim(Vy,) <n —k.

For p = 1,...,t, let y, and z, be as in equation (1), let u, = %yp, and let v, =
%zp so that {uq,...,us,v1,..., v} is an orthonormal basis of span(AU B). Hence, Au, =
%A (zp + Liwy) = % ()‘xp + %Lk%) = % ()‘% (Up +2p) + %% (yp — zp)) =3 ()‘ + %) upt
1 ()\ - %) vp. Similarly, Av, = 1 ()\ - %) up + % ()\ + %) Vp.
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Theorem 8. Let A € Or, be normal. Let o (A) = {/\17 oy Aty )\%, e )\%} with | A1 > -+ >
|A¢] > 1. For each p =1,...,t, if the multiplicity of A\, is sp, then the multiplicity of )\le s
also s,. Moreover, we have n = 2k = 22;:1 sp. Forp=1,..1t, set ap, = %, set B, =
% (Ap + ), set d, = % (Ap —ap), set Dy = By, , set B, = 0,15, set D = Dy @ --- @ Dy,
D FE
E D

and set E = E1 & ---® E,. There exists a unitary P € O, such that P*AP =

L
)\P

dim(VAp) = dim(Vap), we have Kk =n — k so that n =2k =2 Z;)=1 Sp, as desired.

Let ypq and z,4 be as in Lemma 7. Set Y, = [ypl e ypmp], set Z, = [qu e zqmq], and
set P=[Y1---Y; Z1---Z4]. Set D, = diag(By, ..., Bp) € My, (C), set E, = diag(dy, ...,0p) €

D FE

M,,, (C),set D =D ®---® Dy, set E=FE1@©---@Ey., and set M = 2 Dl Because
each y,, € A¥ and each z,, € B¥, there exist unitary Q1 € Mj, (C) and Q2 € M,,_ (C)
such that P = @1 @ Q2. Thus, P is unitary and P € Op,. Moreover, one checks that
AP = PM. O

Proof. Forp=1,...,t,set oy, = =, set B, = + (A, + ), and set §, = £ (A, — o). Because

Let A € Op, be normal, and that o (4) = {Al,...,At,%,...,%} with [\ > -+ >

[Add] > 1. For p =1,..,t, let A\, ap, Bp, 0p, Dp, and E, be as in Theorem 8. Write
Ap = |Ap| €. Then a, = ﬁewl’, By =12 <|)\p| + ﬁ) e, and 6, = 1 <|)\p| — ﬁ) et
Set C), = %(|)\p|+ﬁ) I, set W, = eie”fsp, and set F, = %(|)\p| — ﬁ) I,. Let
C=C19---aCL,let W=W®---aW,andlet F =F,®---®F,. Then D =CW
and E = FW. Set U = W &W. Then U is unitary and U € Op,. Moreover,

«_ | C F o I 1 . .
MU* = FoCl Let X = —5 7 I} € M, (C). One checks that X is unitary

and that XMU*X* = (C+F)® (C—F). Now, C+ F = |[\M|I;, @ - @& | M| [, and
C-F = |T11\181 @ - @ r3;7Ls,, so that XMU*X* is positive definite. If A is positive
definite, then we may take each 6, = 0, so that W = I.

Corollary 9. Let A € O, be normal. Let o (A) = {)\1, s At L } with A1 > -+ >

1 1
e
|Ae] > 1. Forp=1,...,t, suppose that A, has multiplicity s,. Set 3, = % <|)\p| + ﬁ),
P
set 0, = 3 (|)\p\ — ﬁ), set Dy = Byls,, set By, = 0pls,, set D = Dy @ --- @ Dy, and set

D FE

E=FE &---®E,. There exist unitary P,Q € Op, such that P*AQ = l E D If A

is also positive definite, then we may take Q@ = P.

Notice that both D and F are positive definite, and that D? — E? = I. Moreover, both
D and E are determined by the eigenvalues of A (assuming the eigenvalues do not lie on
the unit circle).

Let A € O, be normal. Suppose that the distinct eigenvalues of A that are on the unit
circle are A1, ..., As. Let V) = span{V),,...,V),}. Lemma 6 guarantees that for p =1, ..., ¢,
each V), has orthonormal basis in A¥UB"*. Let A; = {1, ..., 7, } be the set of such vectors
in A* and let B; = {91, ..., 45} be the set of such vectors in B" . Then j = k—r =n—k—s.
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Extend A; to a basis of A¥ say Ay = {z1, ..., Ty, ..., 71, } and extend B to a basis of B" % say
By = {z1, ..., 2j,y1-.,ys}. Notice that V& = span{@, 1, ..., ¥k, 21, ..., z; }. If @ € Vi, then
Az € V. In particular, if z € span(A;), then Ax € span(A;); and if z € span(B;), then
Az € span(By). If v € V&, then Az € Vit Ifz € V) and ify € V&, then 2* Ay = 0 = y* Ax.
Let X =[xy, let Z =[21---2],let Y = [y1---ys|, and let P = [X Z Y]. There exist
unitary Q1 € My, (C) and unitary Q2 € M, (C) such that P = Q1 ® Q-, so that P € Oy, .
For p = 1,...,r, suppose that Az, = A, 7p, and for ¢ = 1,..., 5, suppose that Ay, = A\¢ v,
Let X1 = diag(Amy, .-, Am,.) and let o = diag(Ay,, ..., Ar,).  There exists N € My, (C)
such that P*AP = 3, © N @ X3. Because A € Or,, we have N € Or,. Moreover, the
eigenvalues of N do not lie on the unit circle (as the eigenvalues of N are the remaining
eigenvalues of A). Corollary 9 guarantees that there exist unitary P1,Q1 € Or;, positive
definite diagonal D, E € M; (C) such that D? — E? = [ and PfNQ; = g g . Set
Po=Y16P &3 andset Qa = I[; Q1P I;. Then, P, and ()2 are both unitary and both
are in Or,. Moreover, Py P*APQs =1; ® PFNQ:1 @ 1.

Theorem 10. Let A € Oy, be normal. There exist nonnegative integers v and s, unitary
P,Q € Oy, positive definite diagonal D, E € My_, (C) such that (1) k—r=n—k—s, (2)

D FE
D?—FE?=1I_,,and (3) A=P|I.® - ® I, | Q*. If A is also positive definite,

then we may take (a) Q = P and (b) take D — E to be positive definite.

Let B € Oy, be given. Then BB* and B*B are also in O, . Moreover, both BB* and
B*B are positive definite, and BB* is similar to B*B. For a normal A € Oy, , notice that
the positive definite matrices D and F in Theorem 10 are determined by the eigenvalues
of A that are not lying on the unit circle. Once these are determined, the integers r
and s are easily determined. Theorem 10 guarantees that there exist unitary P,Q € Orp,
such that P*BB'P =1, 0 | P } o1, = Q"B*BO. Let Z = QP*. Then Z € Oy,
and is also unitary. Moreover, BB* = Z*B*BZ. Set C' = BZ. Then C € O, and
C*C =7Z*B*BZ = BB* = CC", so that C is normal, as well. Theorem 10 now shows the
following.

Corollary 11. Let A € Oy, be given. There exist nonnegative integers v and s, unitary
P,Q € Or,, and positive definite diagonal D, E € My_, (C) such that k —r =n —k — s,

o)

Let A € Op, be given. Let the integers r and s, the unitary P,Q € Op,, and
positive definite diagonal matrices D, E € Mj_,. (C) be as in Corollary 11. Set X =

D?—FE?=1I,_,, and A=P <IT@

D

D FE ) ) T T

I ® E D @©l;. Setj=k—r. Let V= 7% [ T ] € M3; (C). One checks that
_| D E| _ .| D+E 0 . o | .

K = [ g D= % [ 0 D_E } V. Write D + E = diag(as, ..., a;) and write

D—FE = diag(by,...,b;). Then foreachp=1,..,5, we have b, = i Let ¢, = In(a,), so that
In (b,) = —c,. Let C = diag(cy, ...,cj), and let G = C @ —C. Then K = V*eCV =€V ¢V,

o [0 C
Now,VGV—[C 0].
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Corollary 12. Let A € Op, be given. There exist nonnegative integers r and s, unitary
P,Q € Oy,, positive definite diagonal D € My_, (C) such that k —r =n—k—s, F =
0 D

0, ® D o ]@05, and A = Pef Q*.

Notice that in Corollary 11, A = PXQ* = PXP* (PQ*), that PXP* is positive defi-
nite, that PQ* is unitary, and that both PXP* and PQ* are in Or,. This is the polar
decomposition of A. We present a different proof. First, notice that if A € Oy, , then

LyA*L, = A~!. Taking the conjugate, we have Ly (Z)*Lk = (Z)_l so that A € Or,.
Similarly, it can be shown that A7 and A* are also in Op,.

Theorem 13. Let A € Oy, be given. There exist P,U € Oy, with P positive definite and
U unitary such that A = PU.

Proof. Let A € Op, be given. Then A* € Oy, and hence, AA* € Or,. Notice that AA*
is positive definite. Let ¢ (x) be a polynomial that interpolates 1/z in the joint spectrum
of AA* and (AA*)™'. Then we may choose ¢ (z) to be a real polynomial. If ¢ (AA*) =
P, then P is positive definite and ¢ ((AA*)fl) = Pl Now, P7' =¢ ((A*A)fl) =
q(Ag (A*A)) = Ay (q(A*A)) = Ay (P) and P € Op,. Set U =P 'A. Then U € Oy,
(as both A and P are), U*U = P~'A*AP~! = I, and A = PU, as desired. O

Let H € H, be given, and suppose that there exists a nonsingular X € M, (C) such
that H = X*LyX. Let A € Og be given. Lemma 3 guarantees that XAX ! € Op,.
Moreover, Lemma 13 ensures that XAX ! = PU, with P,U € Op,, P is positive definite,
and U is unitary. Now, A = (X'PX) (X 'UX), and notice that both X 'PX and
XX arein Oy. Notice also that both X 'PX and X ~'UX are diagonalizable, with
X ~'PX having positive eigenvalues and X ~'UX having eigenvalues that are on the unit
circle. Such a factorization is known as the Iwasawa decomposition [5, Lemma 3.12].

Corollary 14. Let H € H, be given, and suppose that there exists a nonsingular X €
M, (C) such that H = X*LpX. Then A € Oy if and only if there exist W,V € Oy such
that both W and V' are diagonalizable, W has positive eigenvalues, V' has eigenvalues that

are on the unit circle, and A =WV,
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