Abstract:
A shape optimization method is used to study the exterior Bernoulli free boundary problem. We minimize the Kohn–Vogelius-type cost functional over a class of admissible domains subject to two boundary value problems. The first-order shape derivative of the cost functional is recalled and its second-order shape derivative for general domains is computed via the boundary differentiation scheme. Additionally, the second-order shape derivative of J at the solution of the Bernoulli problem is computed using Tiihonen’s approach.